Li Yeshu, Cui Jonathan, Sheng Yilun, Liang Xiao, Wang Jingdong, Chang Eric I-Chao, Xu Yan
Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States.
Vacaville Christian Schools, Vacaville, CA 95687, United States.
Comput Med Imaging Graph. 2021 Oct;93:101991. doi: 10.1016/j.compmedimag.2021.101991. Epub 2021 Sep 25.
Whole brain segmentation is an important neuroimaging task that segments the whole brain volume into anatomically labeled regions-of-interest. Convolutional neural networks have demonstrated good performance in this task. Existing solutions, usually segment the brain image by classifying the voxels, or labeling the slices or the sub-volumes separately. Their representation learning is based on parts of the whole volume whereas their labeling result is produced by aggregation of partial segmentation. Learning and inference with incomplete information could lead to sub-optimal final segmentation result. To address these issues, we propose to adopt a full volume framework, which feeds the full volume brain image into the segmentation network and directly outputs the segmentation result for the whole brain volume. The framework makes use of complete information in each volume and can be implemented easily. An effective instance in this framework is given subsequently. We adopt the 3D high-resolution network (HRNet) for learning spatially fine-grained representations and the mixed precision training scheme for memory-efficient training. Extensive experiment results on a publicly available 3D MRI brain dataset show that our proposed model advances the state-of-the-art methods in terms of segmentation performance.
全脑分割是一项重要的神经影像学任务,它将整个大脑体积分割成解剖学标记的感兴趣区域。卷积神经网络在这项任务中表现出了良好的性能。现有的解决方案通常通过对体素进行分类,或分别对切片或子体积进行标记来分割脑图像。它们的表示学习基于整个体积的一部分,而它们的标记结果是通过部分分割的聚合产生的。使用不完整的信息进行学习和推理可能会导致最终分割结果不理想。为了解决这些问题,我们提出采用全体积框架,该框架将整个体积的脑图像输入到分割网络中,并直接输出整个大脑体积的分割结果。该框架利用了每个体积中的完整信息,并且易于实现。随后给出了一个有效的实例。我们采用 3D 高分辨率网络 (HRNet) 来学习空间上精细的表示,以及混合精度训练方案来实现高效的内存训练。在一个公开的 3D MRI 脑数据集上进行的广泛实验结果表明,我们提出的模型在分割性能方面优于现有方法。