Suppr超能文献

氧化石墨烯/氧化铁纳米颗粒掺杂TiO陶瓷膜电活化过一硫酸盐:去除1,4-二氧六环过程中单线态氧生成的机制

Electro-activation of peroxymonosulfate by a graphene oxide/iron oxide nanoparticle-doped TiO ceramic membrane: mechanism of singlet oxygen generation in the removal of 1,4-dioxane.

作者信息

Li Wei, Xiao Runlin, Lin Hui, Yang Kui, Li Wei, He Kuanchang, Yang Li-Hui, Pu Mengjie, Li Mengyun, Lv Sihao

机构信息

Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.

Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.

出版信息

J Hazard Mater. 2022 Feb 15;424(Pt B):127342. doi: 10.1016/j.jhazmat.2021.127342. Epub 2021 Sep 26.

Abstract

Electro-activation of peroxymonosulfate (PMS) has been widely investigated for the degradation of organic pollutants. Herein, we employ graphene oxide (GO)/FeO nanoparticles (NPs) doped into a TiO reactive electrochemical membrane through strong chemical bonding as the cathode to activate PMS for the degradation of 1,4-dioxane (1,4-D). The strong chemical interaction between GO, FeO-NPs, and TiO via Fe-O---GO---O-Ti bonds enhances the electron-transfer efficiency and provides catalytically active sites that boost the electro-activation of PMS. As a result, the 1,4-D oxidation rate of the GO/FeO-NPs@TiO REM cathode is ~3 times higher (7.21 × 10 min) than those of other TiO ceramic membranes, and O plays a key role (59.9%) in the degradation of 1,4-D. The O generation mechanism in the electro-activation process of PMS was systematically investigated, and we claimed that O is mainly generated from the precursors HO and O/HO rather than by O or OH, as has been reported in previous studies. A flow-through mode test in the PMS electro-activation system is firstly reported, and the 1,4-D decay efficiency is 7.1 times higher than that obtained by a flow-by mode, showing that an improved PMS mass transfer efficiency enhances the conversion to reactive oxygen species.

摘要

过一硫酸盐(PMS)的电活化已被广泛研究用于有机污染物的降解。在此,我们通过强化学键合将氧化石墨烯(GO)/FeO纳米颗粒(NPs)掺杂到TiO反应性电化学膜中作为阴极,以活化PMS来降解1,4 - 二氧六环(1,4 - D)。GO、FeO - NPs和TiO之间通过Fe - O---GO---O - Ti键形成的强化学相互作用提高了电子转移效率,并提供了催化活性位点,促进了PMS的电活化。结果,GO/FeO - NPs@TiO反应性电化学膜阴极对1,4 - D的氧化速率比其他TiO陶瓷膜高约3倍(7.21×10⁻³ min⁻¹),并且超氧阴离子(O₂⁻)在1,4 - D的降解中起关键作用(59.9%)。系统研究了PMS电活化过程中O₂⁻的生成机制,我们认为O₂⁻主要由前驱体HO₂和O₂⁻/HO₂生成,而不是像先前研究报道的那样由O₂或OH生成。首次报道了PMS电活化系统中的流通模式测试,1,4 - D的衰减效率比通过旁路模式获得的效率高7.1倍,表明改善的PMS传质效率提高了向活性氧物种的转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验