Li Wei, Xiao Runlin, Xu Jiale, Lin Hui, Yang Kui, Li Wei, He Kuanchang, Tang Longxiang, Chen Jie, Wu Yiping, Lv Sihao
Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States.
Water Res. 2022 Jun 1;216:118287. doi: 10.1016/j.watres.2022.118287. Epub 2022 Mar 11.
Although TiO ceramic membrane has been recognized as one of the most promising anode materials for electrochemical advanced oxidation process (EAOP), it suffers from relatively low hydroxyl radical (OH) production rate and high charge-transfer resistance that restricted its oxidation performance of organic pollutants. Herein, we reported an effective interface engineering strategy to develop a TiO reactive electrochemical membrane (REM) doped by graphene oxide nanoparticles (GONs), GONs@TiO REM, via strong GONs-O-Ti bonds. Results showed that 1% (wt%) GON doping on TiO REM significantly reduced the charge-transfer resistance from 73.87 to 8.42 Ω compared with the pristine TiO REM, and yielded OH at 2.5-2.8 times higher rate. The 1,4-dioxane (1,4-D) oxidation rate in batch experiments by 1%GONs@TiO REM was 1.49×10 min, 2 times higher than that of the pristine TiO REM (7.51×10 min) and similar to that of BDD (1.79×10 min). The 1%GONs@TiO REM exhibited high stability after a polarization test of 90 h at 80 mA/cm, and within 15 consecutive cycles, its oxidation performance was stable (95.1-99.2%) with about 1% of GONs lost on the REM. In addition, REM process can efficiently degrade refractory organic matters in the groundwater and landfill leachate, the total organic carbon was removed by 54.5% with a single-pass REM. A normalized electric energy consumption per log removal of 1,4-D (EE/O) was observed at only 0.2-0.6 kWh/m. Our results suggested that chemical-bonded interface engineering strategy using GONs can facilitate the EAOP performance of TiO ceramic membrane with outstanding reactivity and stability.
尽管TiO陶瓷膜已被认为是电化学高级氧化工艺(EAOP)中最有前景的阳极材料之一,但它存在羟基自由基(OH)产生速率相对较低以及电荷转移电阻较高的问题,这限制了其对有机污染物的氧化性能。在此,我们报道了一种有效的界面工程策略,通过强GONs-O-Ti键来开发一种由氧化石墨烯纳米颗粒(GONs)掺杂的TiO反应性电化学膜(REM),即GONs@TiO REM。结果表明,与原始TiO REM相比,在TiO REM上掺杂1%(重量)的GONs可将电荷转移电阻从73.87Ω显著降低至8.42Ω,并使OH的产生速率提高2.5至2.8倍。在分批实验中,1%GONs@TiO REM对1,4 - 二氧六环(1,4 - D)的氧化速率为1.49×10⁻² min⁻¹,比原始TiO REM(7.51×10⁻³ min⁻¹)高2倍,与BDD(1.79×10⁻² min⁻¹)相似。在80 mA/cm²下进行90小时的极化测试后,1%GONs@TiO REM表现出高稳定性,并且在连续15个循环内,其氧化性能稳定(95.1 - 99.2%),REM上约有1%的GONs损失。此外,REM工艺可以有效降解地下水中的难降解有机物和垃圾渗滤液,单次通过REM可去除54.5%的总有机碳。观察到每去除1,4 - D的对数归一化电能消耗(EE/O)仅为0.2 - 0.6 kWh/m³。我们的结果表明,使用GONs的化学键合界面工程策略可以促进TiO陶瓷膜的EAOP性能,具有出色的反应性和稳定性。