Suppr超能文献

心脏瓣膜手术后严重并发症的多变量预后模型。

The multivariable prognostic models for severe complications after heart valve surgery.

机构信息

Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No.58, Zhongshan Road II, Guangzhou, 510080, China.

NCH Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, 510080, China.

出版信息

BMC Cardiovasc Disord. 2021 Oct 11;21(1):491. doi: 10.1186/s12872-021-02268-z.

Abstract

BACKGROUND

To provide multivariable prognostic models for severe complications prediction after heart valve surgery, including low cardiac output syndrome (LCOS), acute kidney injury requiring hemodialysis (AKI-rH) and multiple organ dysfunction syndrome (MODS).

METHODS

We developed multivariate logistic regression models to predict severe complications after heart valve surgery using 930 patients collected retrospectively from the first affiliated hospital of Sun Yat-Sen University from January 2014 to December 2015. The validation was conducted using a retrospective dataset of 713 patients from the same hospital from January 2016 to March 2017. We considered two kinds of prognostic models: the PRF models which were built by using the preoperative risk factors only, and the PIRF models which were built by using both of the preoperative and intraoperative risk factors. The least absolute shrinkage selector operator was used for developing the models. We assessed and compared the discriminative abilities for both of the PRF and PIRF models via the receiver operating characteristic (ROC) curve.

RESULTS

Compared with the PRF models, the PIRF modes selected additional intraoperative factors, such as auxiliary cardiopulmonary bypass time and combined tricuspid valve replacement. Area under the ROC curves (AUCs) of PRF models for predicting LCOS, AKI-rH and MODS are 0.565 (0.466, 0.664), 0.688 (0.62, 0.757) and 0.657 (0.563, 0.751), respectively. As a comparison, the AUCs of the PIRF models for predicting LOCS, AKI-rH and MODS are 0.821 (0.747, 0.896), 0.78 (0.717, 0.843) and 0.774 (0.7, 0.847), respectively.

CONCLUSIONS

Adding the intraoperative factors can increase the predictive power of the prognostic models for severe complications prediction after heart valve surgery.

摘要

背景

为了预测心脏瓣膜手术后严重并发症(包括低心输出综合征[LCOS]、需要血液透析的急性肾损伤[AKI-rH]和多器官功能障碍综合征[MODS]),我们建立了多变量逻辑回归模型。

方法

我们使用回顾性收集的 930 例 2014 年 1 月至 2015 年 12 月中山大学第一附属医院心脏瓣膜手术后患者的数据,建立了预测严重并发症的多变量逻辑回归模型。验证使用同一医院 2016 年 1 月至 2017 年 3 月的 713 例回顾性数据集进行。我们考虑了两种预后模型:仅使用术前危险因素建立的 PRF 模型,以及同时使用术前和术中危险因素建立的 PIRF 模型。使用最小绝对收缩选择算子进行模型开发。我们通过接收者操作特征(ROC)曲线评估和比较了 PRF 和 PIRF 模型的鉴别能力。

结果

与 PRF 模型相比,PIRF 模型选择了其他术中因素,如辅助体外循环时间和三尖瓣联合置换。PRF 模型预测 LCOS、AKI-rH 和 MODS 的 ROC 曲线下面积(AUC)分别为 0.565(0.466,0.664)、0.688(0.62,0.757)和 0.657(0.563,0.751)。相比之下,PIRF 模型预测 LCOS、AKI-rH 和 MODS 的 AUC 分别为 0.821(0.747,0.896)、0.78(0.717,0.843)和 0.774(0.7,0.847)。

结论

加入术中因素可以提高心脏瓣膜手术后严重并发症预测的预后模型预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c50/8504034/974d615c5831/12872_2021_2268_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验