Suppr超能文献

基于数据非依赖采集的 SARS-CoV-2 刺突蛋白糖基化位点特异性糖蛋白质组学分析。

Data-independent acquisition mass spectrometry for site-specific glycoproteomics characterization of SARS-CoV-2 spike protein.

机构信息

Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston University Medical Campus, 670 Albany St., Rm. 509, Boston, MA, 02118, USA.

Boston University Bioinformatics Program, Boston University, Boston, MA, USA.

出版信息

Anal Bioanal Chem. 2021 Dec;413(29):7305-7318. doi: 10.1007/s00216-021-03643-7. Epub 2021 Oct 12.

Abstract

The spike protein of SARS-CoV-2, the virus responsible for the global pandemic of COVID-19, is an abundant, heavily glycosylated surface protein that plays a key role in receptor binding and host cell fusion, and is the focus of all current vaccine development efforts. Variants of concern are now circulating worldwide that exhibit mutations in the spike protein. Protein sequence and glycosylation variations of the spike may affect viral fitness, antigenicity, and immune evasion. Global surveillance of the virus currently involves genome sequencing, but tracking emerging variants should include quantitative measurement of changes in site-specific glycosylation as well. In this work, we used data-dependent acquisition (DDA) and data-independent acquisition (DIA) mass spectrometry to quantitatively characterize the five N-linked glycosylation sites of the glycoprotein standard alpha-1-acid glycoprotein (AGP), as well as the 22 sites of the SARS-CoV-2 spike protein. We found that DIA compared favorably to DDA in sensitivity, resulting in more assignments of low-abundance glycopeptides. However, the reproducibility across replicates of DIA-identified glycopeptides was lower than that of DDA, possibly due to the difficulty of reliably assigning low-abundance glycopeptides confidently. The differences in the data acquired between the two methods suggest that DIA outperforms DDA in terms of glycoprotein coverage but that overall performance is a balance of sensitivity, selectivity, and statistical confidence in glycoproteomics. We assert that these analytical and bioinformatics methods for assigning and quantifying glycoforms would benefit the process of tracking viral variants as well as for vaccine development.

摘要

SARS-CoV-2 的刺突蛋白是导致 COVID-19 全球大流行的病毒,它是一种丰富的、高度糖基化的表面蛋白,在受体结合和宿主细胞融合中发挥关键作用,是目前所有疫苗开发工作的重点。现在,在全球范围内传播的令人关注的变异体在刺突蛋白中表现出突变。刺突蛋白的序列和糖基化变异可能会影响病毒的适应性、抗原性和免疫逃逸。目前,对病毒的全球监测涉及基因组测序,但跟踪新出现的变异体还应包括对特定部位糖基化变化的定量测量。在这项工作中,我们使用依赖数据的采集(DDA)和独立数据的采集(DIA)质谱法来定量表征糖蛋白标准α-1-酸性糖蛋白(AGP)的五个 N-连接糖基化位点,以及 SARS-CoV-2 刺突蛋白的 22 个位点。我们发现,DIA 在灵敏度方面优于 DDA,从而可以更准确地分配低丰度糖肽。然而,DIA 鉴定的糖肽在重复之间的重现性低于 DDA,这可能是由于难以可靠地确定低丰度糖肽的置信度。两种方法之间获得的数据差异表明,DIA 在糖蛋白覆盖率方面优于 DDA,但总体性能是糖组学中灵敏度、选择性和统计置信度的平衡。我们断言,这些用于分配和定量糖型的分析和生物信息学方法将有助于跟踪病毒变异体的过程以及疫苗开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e96/8505113/158fa126dfa3/216_2021_3643_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验