Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
Curr Biol. 2021 Oct 11;31(19):R1237-R1251. doi: 10.1016/j.cub.2021.08.069.
Animals originated in the oceans and evolved there for hundreds of millions of years before adapting to terrestrial environments. Today, oceans cover more than two-thirds of Earth and generate as much primary production as land. The path from the first macrobiota to modern marine biodiversity involved parallel increases in terrestrial nutrient input, marine primary production, species' abundance, metabolic rates, ecotypic diversity and taxonomic diversity. Bottom-up theories of ecosystem cascades arrange these changes in a causal sequence. At the base of marine food webs, nutrient fluxes and atmosphere-ocean chemistry interact with phytoplankton to regulate production. First-order consumers (e.g., zooplankton) might propagate changes in quantity and quality of phytoplankton to changes in abundance and diversity of larger predators (e.g., nekton). However, many uncertainties remain about the mechanisms and effect size of bottom-up control, particularly in oceans across the entire history of animal life. Here, we review modern and fossil evidence for hypothesized bottom-up pathways, and we assess the ramifications of these processes for four key intervals in marine ecosystems: the Ediacaran-Cambrian (635-485 million years ago), the Ordovician (485-444 million years ago), the Devonian (419-359 million years ago) and the Mesozoic (252-66 million years ago). We advocate for a clear articulation of bottom-up hypotheses to better understand causal relationships and proposed effects, combined with additional ecological experiments, paleontological documentation, isotope geochemistry and geophysical reconstructions. How small-scale ecological change transitions into large-scale evolutionary change remains an outstanding question for empirical and theoretical research.
动物起源于海洋,并在那里进化了数亿年,然后才适应了陆地环境。如今,海洋覆盖了地球表面的三分之二以上,产生的初级生产力与陆地相当。从最初的宏生物群到现代海洋生物多样性的演变过程中,陆地养分输入、海洋初级生产力、物种丰度、代谢率、生态型多样性和分类多样性都平行增加。生态系统级联的底层驱动理论将这些变化按因果顺序排列。在海洋食物网的底部,营养物质通量和大气-海洋化学与浮游植物相互作用,调节着生产力。第一级消费者(如浮游动物)可能会将浮游植物数量和质量的变化传播到更大捕食者(如游泳动物)丰度和多样性的变化中。然而,关于底层驱动控制的机制和效应大小仍存在许多不确定性,特别是在整个动物生命历史中的海洋中。在这里,我们回顾了现代和化石证据,以验证假设的底层驱动途径,并评估了这些过程对海洋生态系统的四个关键时期的影响:埃迪卡拉纪-寒武纪(6.35 亿至 4.85 亿年前)、奥陶纪(4.85 亿至 4.44 亿年前)、泥盆纪(4.19 亿至 3.59 亿年前)和中生代(2.52 亿至 6600 万年前)。我们提倡明确阐述底层驱动假说,以更好地理解因果关系和提出的影响,同时结合更多的生态实验、古生物学记录、同位素地球化学和地球物理重建。小规模的生态变化如何过渡到大规模的进化变化仍然是实证和理论研究的一个悬而未决的问题。