Suppr超能文献

整合统计和机器学习方法对双酚 A 暴露数据集进行荟萃分析,揭示了其对细胞凋亡和细胞存活途径中基因表达的影响。

Integrating Statistical and Machine-Learning Approach for Meta-Analysis of Bisphenol A-Exposure Datasets Reveals Effects on Mouse Gene Expression within Pathways of Apoptosis and Cell Survival.

机构信息

Machine Learning Applications and Deep Learning Group, JetBrains Research, Kantemirovskaya Str., 2, 197342 St. Petersburg, Russia.

Department of Neuroscience, Functional Pharmacology, University of Uppsala, BMC, Husargatan 3, Box 593, 751 24 Uppsala, Sweden.

出版信息

Int J Mol Sci. 2021 Oct 5;22(19):10785. doi: 10.3390/ijms221910785.

Abstract

Bisphenols are important environmental pollutants that are extensively studied due to different detrimental effects, while the molecular mechanisms behind these effects are less well understood. Like other environmental pollutants, bisphenols are being tested in various experimental models, creating large expression datasets found in open access storage. The meta-analysis of such datasets is, however, very complicated for various reasons. Here, we developed an integrating statistical and machine-learning model approach for the meta-analysis of bisphenol A (BPA) exposure datasets from different mouse tissues. We constructed three joint datasets following three different strategies for dataset integration: in particular, using all common genes from the datasets, uncorrelated, and not co-expressed genes, respectively. By applying machine learning methods to these datasets, we identified genes whose expression was significantly affected in all of the BPA microanalysis data tested; those involved in the regulation of cell survival include: , , , ; signaling through ()); DNA repair (, ); apoptosis (, , ); and cellular junctions (, , and ). Our results highlight the benefit of combining existing datasets for the integrated analysis of a specific topic when individual datasets are limited in size.

摘要

双酚类物质是重要的环境污染物,由于其具有不同的有害影响而被广泛研究,但其背后的分子机制却知之甚少。与其他环境污染物一样,双酚类物质正在各种实验模型中进行测试,从而产生了大量可在开放存取存储库中找到的表达数据集。然而,由于各种原因,对这些数据集进行荟萃分析非常复杂。在这里,我们开发了一种整合统计和机器学习模型的方法,用于对来自不同小鼠组织的双酚 A (BPA)暴露数据集进行荟萃分析。我们根据数据集集成的三种不同策略构建了三个联合数据集:特别是,使用数据集之间的所有常见基因、不相关和非共表达基因。通过将机器学习方法应用于这些数据集,我们鉴定了在所有测试的 BPA 微分析数据中表达受到显著影响的基因;这些基因参与细胞存活的调控,包括:、、、;通过 ())进行信号转导;DNA 修复(、);细胞凋亡(、、);以及细胞连接(、、和)。我们的研究结果强调了在单个数据集规模有限的情况下,通过组合现有数据集来对特定主题进行综合分析的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e0/8509605/fe2afcea5ea7/ijms-22-10785-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验