Suppr超能文献

共价有机框架:用于光催化降解水中污染物的新型材料平台。

Covalent Organic Frameworks: New Materials Platform for Photocatalytic Degradation of Aqueous Pollutants.

作者信息

Qian Yuhang, Ma Dongge

机构信息

Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.

出版信息

Materials (Basel). 2021 Sep 27;14(19):5600. doi: 10.3390/ma14195600.

Abstract

Covalent organic frameworks (COFs) are highly porous and crystalline polymeric materials, constructed by covalent bonds and extending in two or threedimensions. After the discovery of the first COF materials in 2005 by Yaghi et al., COFs have experienced exciting progress and exhibitedtheirpromising potential applications invarious fields, such as gas adsorption and separation, energy storage, optoelectronics, sensing and catalysis. Because of their tunablestructures, abundant, regular and customizable pores in addition to large specific surface area, COFs can harvest ultraviolet, visible and near-infrared photons, adsorb a large amount of substrates in internal structures and initiate surface redox reactions to act as effective organic photocatalysts for water splitting, CO reduction, organic transformations and pollutant degradation. In this review, we will discuss COF photocatalysts for the degradation of aqueous pollutants. The state-of-the-art paragon examples in this research area will be discussed according to the different structural type of COF photocatalysts. The degradation mechanism will be emphasized. Furthermore, the future development direction, challenges required to be overcome and the perspective in this field will be summarized in the conclusion.

摘要

共价有机框架(COFs)是高度多孔的结晶聚合物材料,由共价键构成并在二维或三维空间中延伸。自2005年Yaghi等人发现首批COF材料以来,COFs取得了令人瞩目的进展,并在气体吸附与分离、能量存储、光电子学、传感和催化等各个领域展现出了广阔的潜在应用前景。由于其结构可调、具有丰富、规则且可定制的孔隙以及较大的比表面积,COFs能够捕获紫外光、可见光和近红外光光子,在内部结构中吸附大量底物并引发表面氧化还原反应,从而成为用于水分解、CO还原、有机转化和污染物降解的有效有机光催化剂。在本综述中,我们将讨论用于降解水中污染物的COF光催化剂。将根据COF光催化剂的不同结构类型来讨论该研究领域的前沿典范实例。将重点阐述降解机理。此外,结论部分将总结该领域未来的发展方向、需要克服的挑战以及前景展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1d3/8509496/dca945ca9dfa/materials-14-05600-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验