Suppr超能文献

SiamMFC:基于流形全卷积孪生网络的视觉目标跟踪

SiamMFC: Visual Object Tracking Based on Mainfold Full Convolution Siamese Network.

机构信息

National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China.

Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.

出版信息

Sensors (Basel). 2021 Sep 24;21(19):6388. doi: 10.3390/s21196388.

Abstract

Visual tracking task is divided into classification and regression tasks, and manifold features are introduced to improve the performance of the tracker. Although the previous anchor-based tracker has achieved superior tracking performance, the anchor-based tracker not only needs to set parameters manually but also ignores the influence of the geometric characteristics of the object on the tracker performance. In this paper, we propose a novel Siamese network framework with ResNet50 as the backbone, which is an anchor-free tracker based on manifold features. The network design is simple and easy to understand, which not only considers the influence of geometric features on the target tracking performance but also reduces the calculation of parameters and improves the target tracking performance. In the experiment, we compared our tracker with the most advanced public benchmarks and obtained a state-of-the-art performance.

摘要

视觉跟踪任务分为分类任务和回归任务,并引入流形特征来提高跟踪器的性能。虽然以前的基于锚点的跟踪器已经取得了优异的跟踪性能,但基于锚点的跟踪器不仅需要手动设置参数,而且还忽略了物体的几何特征对跟踪器性能的影响。在本文中,我们提出了一种基于 ResNet50 作为骨干网络的新型孪生网络框架,这是一种基于流形特征的无锚点跟踪器。该网络设计简单易懂,不仅考虑了几何特征对目标跟踪性能的影响,还减少了参数的计算,提高了目标跟踪性能。在实验中,我们将我们的跟踪器与最先进的公共基准进行了比较,获得了最先进的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7490/8512198/b36cc74766bd/sensors-21-06388-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验