Chen Yingying, Tang Yunyu, Zou Jiazhi, Zeng Kaiwen, Baryshnikov Glib, Li Chengjie, Xie Yongshu
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jungong 300, Shanghai 200090, P. R. China.
ACS Appl Mater Interfaces. 2021 Oct 27;13(42):49828-49839. doi: 10.1021/acsami.1c12448. Epub 2021 Oct 12.
Concerted companion dyes (CC dyes) like have been demonstrated to be an effective platform for developing efficient DSSCs. However, the moderated phenothiazine-based electron donor in results in unsatisfactory . To address this problem, a stronger fluorenyl indoline-based electron donor has been used to construct porphyrin dye and organic dyes -. The stronger electron-donating character of the fluorenyl indoline unit leads to an enhanced value (20.48 mA·cm) for the individual dye . On this basis, CC dyes have been designed and synthesized by combining the frameworks of and with . The complementary absorption characters of the porphyrin and the organic dye moieties lead to panchromatic absorption with a strong light-harvesting capability from 350 to 700 nm and the onset wavelength extended to ca. 840 nm in the IPCE curves. As a result, excellent values have been achieved (>22 mA·cm). In addition to the advantages of high , bulky octyl groups have been introduced into the donor of to reduce dye aggregation and suppress charge recombination. Finally, a highest PCE of 11.1% with a satisfactory (22.25 mA·cm) and an enhanced (750 mV) has been achieved upon coadsorption of with CDCA. In addition, the CC dye -based solar cells exhibit excellent long-term photostability. These results provide an effective method for rationally improving the photovoltaic behavior, especially the of CC dyes, by introducing strong electron donor moieties with suitable substituents.
像[具体名称未给出]这样的协同配合染料(CC染料)已被证明是开发高效染料敏化太阳能电池(DSSC)的有效平台。然而,[具体名称未给出]中基于吩噻嗪的电子给体经过调节后,导致[具体结果未明确给出]不尽人意。为了解决这个问题,一种更强的基于芴基吲哚啉的电子给体已被用于构建卟啉染料[具体名称未给出]和有机染料[具体名称未给出]。芴基吲哚啉单元更强的给电子特性导致单个染料[具体名称未给出]的光电流密度值增强(20.48 mA·cm²)。在此基础上,通过将[具体名称未给出]和[具体名称未给出]的框架与[具体名称未给出]相结合,设计并合成了CC染料[具体名称未给出]。卟啉和有机染料部分的互补吸收特性导致了全色吸收,在350至700 nm范围内具有很强的光捕获能力,并且在IPCE曲线中起始波长延长至约840 nm。结果,实现了优异的光电流密度值(>22 mA·cm²)。除了高光电流密度的优点外,庞大的辛基已被引入到[具体名称未给出]的给体中,以减少染料聚集并抑制电荷复合。最后,在[具体名称未给出]与胆酸(CDCA)共吸附时,实现了11.1%的最高光电转换效率(PCE),具有令人满意的光电流密度(22.25 mA·cm²)和增强的开路电压(750 mV)。此外,基于CC染料[具体名称未给出]的太阳能电池表现出优异的长期光稳定性。这些结果提供了一种有效的方法,通过引入具有合适取代基的强电子给体部分,合理地改善光伏性能,特别是CC染料的光电转换效率。