Suppr超能文献

用于气溶胶吸入治疗和药物递送的多尺度肺建模策略。

Multiscale lung modeling strategies for aerosol inhalation therapy and drug delivery.

作者信息

Koullapis Pantelis, Ollson Bo, Kassinos Stavros C, Sznitman Josué

机构信息

Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus.

Emmace Consulting AB, SE223 63 Lund, Sweden.

出版信息

Curr Opin Biomed Eng. 2019 Sep;11:130-136. doi: 10.1016/j.cobme.2019.11.003. Epub 2019 Nov 13.

Abstract

Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.

摘要

吸入疗法是现代呼吸医学的一个标志。近年来,由于计算能力和可用资源的巨大进步等原因,对呼吸气流和肺部气溶胶沉积的计算流体-颗粒动力学(CFPD)模拟已迅速发展成为生物医学工程领域中一个日益成熟的研究领域。尽管取得了这样的进展,但肺部内在的解剖学和生理学复杂性阻碍了在整个呼吸道应用“强力”模拟策略。在此,我们讨论如何有目的地利用从近期研究中获得的知识来设计高效的混合多尺度肺部模型,并通过计算流体-颗粒动力学定量探索吸入疗法的效果。与针对患者特定应用的努力不同,我们认为这些策略对于广泛的受试者间变异性研究具有巨大潜力,有助于推动针对大量人类患者群体的临床高效吸入疗法的发展。

相似文献

1
Multiscale lung modeling strategies for aerosol inhalation therapy and drug delivery.
Curr Opin Biomed Eng. 2019 Sep;11:130-136. doi: 10.1016/j.cobme.2019.11.003. Epub 2019 Nov 13.
3
One (sub-)acinus for all: Fate of inhaled aerosols in heterogeneous pulmonary acinar structures.
Eur J Pharm Sci. 2018 Feb 15;113:53-63. doi: 10.1016/j.ejps.2017.09.033. Epub 2017 Sep 24.
5
Glottis motion effects on the particle transport and deposition in a subject-specific mouth-to-trachea model: A CFPD study.
Comput Biol Med. 2020 Jan;116:103532. doi: 10.1016/j.compbiomed.2019.103532. Epub 2019 Nov 9.
6
Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD).
PLoS One. 2018 Nov 20;13(11):e0207711. doi: 10.1371/journal.pone.0207711. eCollection 2018.
7
Targeted Drug Delivery to Upper Airways Using a Pulsed Aerosol Bolus and Inhaled Volume Tracking Method.
Flow Turbul Combust. 2019 Jan;102(1):73-87. doi: 10.1007/s10494-018-9927-1. Epub 2018 May 2.
8
In silico optimization of targeted aerosol delivery in upper airways via Inhaled Volume Tracking.
Clin Biomech (Bristol). 2020 Dec;80:105138. doi: 10.1016/j.clinbiomech.2020.105138. Epub 2020 Aug 11.
9
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
10
Subject-Specific Multi-Scale Modeling of the Fate of Inhaled Aerosols.
J Aerosol Sci. 2025 Jan;183. doi: 10.1016/j.jaerosci.2024.106471. Epub 2024 Sep 19.

引用本文的文献

1
iBCS: 4. Application of the Inhalation Biopharmaceutics Classification System to the Development of Orally Inhaled Drug Products.
Mol Pharm. 2025 Apr 7;22(4):1740-1751. doi: 10.1021/acs.molpharmaceut.4c01534. Epub 2025 Mar 13.
2
Subject-Specific Multi-Scale Modeling of the Fate of Inhaled Aerosols.
J Aerosol Sci. 2025 Jan;183. doi: 10.1016/j.jaerosci.2024.106471. Epub 2024 Sep 19.
4
Practical Considerations in Dose Extrapolation from Animals to Humans.
J Aerosol Med Pulm Drug Deliv. 2024 Apr;37(2):77-89. doi: 10.1089/jamp.2023.0041. Epub 2024 Jan 17.
5
Exploring the role of electrostatic deposition on inhaled aerosols in alveolated microchannels.
Sci Rep. 2023 Dec 27;13(1):23069. doi: 10.1038/s41598-023-49946-w.
6
In vitro-in silico correlation of three-dimensional turbulent flows in an idealized mouth-throat model.
PLoS Comput Biol. 2023 Mar 23;19(3):e1010537. doi: 10.1371/journal.pcbi.1010537. eCollection 2023 Mar.
7
A computed tomography imaging-based subject-specific whole-lung deposition model.
Eur J Pharm Sci. 2022 Oct 1;177:106272. doi: 10.1016/j.ejps.2022.106272. Epub 2022 Jul 29.
8
Recent advances in the understanding of alveolar flow.
Biomicrofluidics. 2022 Apr 13;16(2):021502. doi: 10.1063/5.0084415. eCollection 2022 Mar.
9
Human Multi-Compartment Platform for Emulating Respiratory Airborne Transmission: From Nose to Pulmonary Acini.
Front Physiol. 2022 Mar 8;13:853317. doi: 10.3389/fphys.2022.853317. eCollection 2022.
10
Concepts of advanced therapeutic delivery systems for the management of remodeling and inflammation in airway diseases.
Future Med Chem. 2022 Feb;14(4):271-288. doi: 10.4155/fmc-2021-0081. Epub 2022 Jan 12.

本文引用的文献

1
The Effect of Aging on Aerosol Bolus Deposition in the Healthy Adult Lung: A 19-Year Longitudinal Study.
J Aerosol Med Pulm Drug Deliv. 2020 Jun;33(3):133-139. doi: 10.1089/jamp.2019.1566. Epub 2019 Oct 15.
2
Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs.
J Aerosol Med Pulm Drug Deliv. 2019 Oct;32(5):317-339. doi: 10.1089/jamp.2018.1508. Epub 2019 Jul 9.
3
PIV measurements of the SimInhale benchmark case.
Eur J Pharm Sci. 2019 May 15;133:183-189. doi: 10.1016/j.ejps.2019.03.025. Epub 2019 Mar 30.
4
Differences in Particle Deposition Between Members of Imaging-Based Asthma Clusters.
J Aerosol Med Pulm Drug Deliv. 2019 Aug;32(4):213-223. doi: 10.1089/jamp.2018.1487. Epub 2019 Mar 19.
5
Use of computational fluid dynamics deposition modeling in respiratory drug delivery.
Expert Opin Drug Deliv. 2019 Jan;16(1):7-26. doi: 10.1080/17425247.2019.1551875. Epub 2018 Dec 10.
6
Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD).
PLoS One. 2018 Nov 20;13(11):e0207711. doi: 10.1371/journal.pone.0207711. eCollection 2018.
7
Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease.
BMC Pulm Med. 2018 Aug 6;18(1):129. doi: 10.1186/s12890-018-0697-2.
8
Sex differences in large conducting airway anatomy.
J Appl Physiol (1985). 2018 Sep 1;125(3):960-965. doi: 10.1152/japplphysiol.00440.2018. Epub 2018 Jul 19.
9
Anatomically Based Analysis of Radioaerosol Distribution in Pulmonary Scintigraphy: A Feasibility Study in Asthmatics.
J Aerosol Med Pulm Drug Deliv. 2018 Oct;31(5):298-310. doi: 10.1089/jamp.2017.1403. Epub 2018 Apr 19.
10
Airflow Simulations in Infant, Child, and Adult Pulmonary Conducting Airways.
Ann Biomed Eng. 2018 Mar;46(3):498-512. doi: 10.1007/s10439-017-1971-9. Epub 2017 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验