Koullapis Pantelis, Ollson Bo, Kassinos Stavros C, Sznitman Josué
Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus.
Emmace Consulting AB, SE223 63 Lund, Sweden.
Curr Opin Biomed Eng. 2019 Sep;11:130-136. doi: 10.1016/j.cobme.2019.11.003. Epub 2019 Nov 13.
Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.
吸入疗法是现代呼吸医学的一个标志。近年来,由于计算能力和可用资源的巨大进步等原因,对呼吸气流和肺部气溶胶沉积的计算流体-颗粒动力学(CFPD)模拟已迅速发展成为生物医学工程领域中一个日益成熟的研究领域。尽管取得了这样的进展,但肺部内在的解剖学和生理学复杂性阻碍了在整个呼吸道应用“强力”模拟策略。在此,我们讨论如何有目的地利用从近期研究中获得的知识来设计高效的混合多尺度肺部模型,并通过计算流体-颗粒动力学定量探索吸入疗法的效果。与针对患者特定应用的努力不同,我们认为这些策略对于广泛的受试者间变异性研究具有巨大潜力,有助于推动针对大量人类患者群体的临床高效吸入疗法的发展。