Hu Jing, Al-Salihy Adel, Wang Jing, Li Xue, Fu Yanfei, Li Zhonghua, Han Xijiang, Song Bo, Xu Ping
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China.
Adv Sci (Weinh). 2021 Nov;8(22):e2103314. doi: 10.1002/advs.202103314. Epub 2021 Oct 12.
Electron density modulation is of great importance in an attempt to achieve highly active electrocatalysts for the oxygen evolution reaction (OER). Here, the successful construction of CuO@CoOOH p-n heterojunction (i.e., p-type CuO and n-type CoOOH) nanoarray electrocatalyst through an in situ anodic oxidation of CuO@CoS on copper foam is reported. The p-n heterojunction can remarkably modify the electronic properties of the space-charge region and facilitate the electron transfer. Moreover, in situ Raman study reveals the generation of SO from CoS oxidation, and electron cloud density distribution and density functional theory calculation suggest that surface-adsorbed SO can facilitate the OER process by enhancing the adsorption of OH . The positively charged CoOOH in the space-charge region can significantly enhance the OER activity. As a result, the CuO@CoOOH p-n heterojunction shows significantly enhanced OER performance with a low overpotential of 186 mV to afford a current density of 10 mA cm . The successful preparation of a large scale (14 × 25 cm ) sample demonstrates the possibility of promoting the catalyst to industrial-scale production. This study offers new insights into the design and fabrication of non-noble metal-based p-n heterojunction electrocatalysts as effective catalytic materials for energy storage and conversion.
在尝试制备用于析氧反应(OER)的高活性电催化剂时,电子密度调制至关重要。在此,报道了通过对泡沫铜上的CuO@CoS进行原位阳极氧化,成功构建了CuO@CoOOH p-n异质结(即p型CuO和n型CoOOH)纳米阵列电催化剂。p-n异质结可以显著改变空间电荷区的电子性质并促进电子转移。此外,原位拉曼研究揭示了CoS氧化生成SO ,电子云密度分布和密度泛函理论计算表明,表面吸附的SO 可以通过增强OH 的吸附来促进OER过程。空间电荷区带正电的CoOOH可以显著提高OER活性。结果,CuO@CoOOH p-n异质结表现出显著增强的OER性能,在186 mV的低过电位下即可提供10 mA cm 的电流密度。成功制备了大规模(14×25 cm )的样品,证明了将该催化剂推广到工业规模生产的可能性。本研究为设计和制备基于非贵金属的p-n异质结电催化剂作为储能和转换的有效催化材料提供了新的见解。