Suppr超能文献

体外模拟人类 T 细胞发育作为造血干细胞多能性的读出。

Modeling of human T cell development in vitro as a read-out for hematopoietic stem cell multipotency.

机构信息

Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.

Cancer Research Institute Ghent (CRIG), Ghent, Belgium.

出版信息

Biochem Soc Trans. 2021 Nov 1;49(5):2113-2122. doi: 10.1042/BST20210144.

Abstract

Hematopoietic stem cells (HSCs) reside in distinct sites throughout fetal and adult life and give rise to all cells of the hematopoietic system. Because of their multipotency, HSCs are capable of curing a wide variety of blood disorders through hematopoietic stem cell transplantation (HSCT). However, due to HSC heterogeneity, site-specific ontogeny and current limitations in generating and expanding HSCs in vitro, their broad use in clinical practice remains challenging. To assess HSC multipotency, evaluation of their capacity to generate T lymphocytes has been regarded as a valid read-out. Several in vitro models of T cell development have been established which are able to induce T-lineage differentiation from different hematopoietic precursors, although with variable efficiency. Here, we review the potential of human HSCs from various sources to generate T-lineage cells using these different models in order to address the use of both HSCs and T cell precursors in the clinic.

摘要

造血干细胞(HSCs)存在于胎儿和成人期的不同部位,并产生造血系统的所有细胞。由于其多能性,HSCs 能够通过造血干细胞移植(HSCT)治愈多种血液疾病。然而,由于 HSC 的异质性、特定部位的个体发生以及目前在体外生成和扩增 HSCs 的限制,它们在临床实践中的广泛应用仍然具有挑战性。为了评估 HSC 的多能性,评估其生成 T 淋巴细胞的能力已被视为一种有效的检测方法。已经建立了几种 T 细胞发育的体外模型,这些模型能够从不同的造血前体诱导 T 谱系分化,尽管效率不同。在这里,我们综述了使用这些不同模型的各种来源的人类 HSCs 生成 T 细胞谱系细胞的潜力,以解决在临床中使用 HSCs 和 T 细胞前体的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/744d/8589437/fc41adde3b3f/BST-49-2113-g0001.jpg

相似文献

1
Modeling of human T cell development in vitro as a read-out for hematopoietic stem cell multipotency.
Biochem Soc Trans. 2021 Nov 1;49(5):2113-2122. doi: 10.1042/BST20210144.
3
Variable SATB1 Levels Regulate Hematopoietic Stem Cell Heterogeneity with Distinct Lineage Fate.
Cell Rep. 2018 Jun 12;23(11):3223-3235. doi: 10.1016/j.celrep.2018.05.042.
4
Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals.
Immunity. 2016 Sep 20;45(3):597-609. doi: 10.1016/j.immuni.2016.08.007. Epub 2016 Aug 30.
5
Use of human embryonic stem cells to understand hematopoiesis and hematopoietic stem cell niche.
Curr Stem Cell Res Ther. 2010 Sep;5(3):245-50. doi: 10.2174/157488810791824467.
6
The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation.
Blood. 2006 Jun 15;107(12):4678-86. doi: 10.1182/blood-2005-08-3145. Epub 2006 Mar 2.
7
Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression.
J Exp Med. 2005 May 16;201(10):1603-14. doi: 10.1084/jem.20041888. Epub 2005 May 9.
8
The many faces of hematopoietic stem cell heterogeneity.
Development. 2016 Dec 15;143(24):4571-4581. doi: 10.1242/dev.114231.
9
Avian HSC emergence, migration, and commitment toward the T cell lineage.
FEMS Immunol Med Microbiol. 2003 Dec 5;39(3):205-12. doi: 10.1016/S0928-8244(03)00295-5.
10
Revisiting the lineage contribution of hematopoietic stem and progenitor cells.
Development. 2023 Jul 15;150(14). doi: 10.1242/dev.201609. Epub 2023 Jul 13.

引用本文的文献

1
Generation of autologous hematopoietic stem cell-derived T lymphocytes for cancer immunotherapy.
Heliyon. 2024 Sep 25;10(19):e38447. doi: 10.1016/j.heliyon.2024.e38447. eCollection 2024 Oct 15.
2
ThymoSpheres culture: A model to study human polyclonal unconventional T cells.
Eur J Immunol. 2024 Dec;54(12):e2451265. doi: 10.1002/eji.202451265. Epub 2024 Sep 9.
4
Transcriptional dynamics and epigenetic regulation of E and ID protein encoding genes during human T cell development.
Front Immunol. 2022 Jul 28;13:960918. doi: 10.3389/fimmu.2022.960918. eCollection 2022.

本文引用的文献

1
DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system.
Nat Commun. 2021 Aug 18;12(1):5023. doi: 10.1038/s41467-021-25245-8.
2
New insights into TCR β-selection.
Trends Immunol. 2021 Aug;42(8):735-750. doi: 10.1016/j.it.2021.06.005. Epub 2021 Jul 12.
5
The function of the thymus and its impact on modern medicine.
Science. 2020 Jul 31;369(6503). doi: 10.1126/science.aba2429.
6
Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδ T cell development.
Nat Immunol. 2020 Oct;21(10):1280-1292. doi: 10.1038/s41590-020-0747-9. Epub 2020 Jul 27.
8
Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes.
Immunity. 2020 Jun 16;52(6):1088-1104.e6. doi: 10.1016/j.immuni.2020.03.019. Epub 2020 Apr 17.
9
iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests.
Stem Cell Reports. 2020 Feb 11;14(2):300-311. doi: 10.1016/j.stemcr.2019.12.010. Epub 2020 Jan 16.
10
Do haematopoietic stem cells age?
Nat Rev Immunol. 2020 Mar;20(3):196-202. doi: 10.1038/s41577-019-0236-2. Epub 2019 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验