Suppr超能文献

远程农村社区医院中通过远程机器人实现的药剂师主导的最佳药物出院计划对患者满意度的影响。

Patient satisfaction with a pharmacist-led best possible medication discharge plan via tele-robot in a remote and rural community hospital.

机构信息

Northwest Telepharmacy Solutions Winnipeg, Manitoba, Canada.

出版信息

Can J Rural Med. 2021 Oct-Dec;26(4):151-159. doi: 10.4103/cjrm.cjrm_74_20.

Abstract

INTRODUCTION

Medication reconciliation (MedRec) reduces the risk of preventable medication-related adverse events (ADEs). A best possible medication discharge plan (BPMDP) is a revised list of medications a patient will take when discharged from hospital; a pharmacist review ensures accuracy. For many hospitals, on-site pharmacists are non-existent. Extension of a visual presence via a mobile robotic platform with real-time audiovisual communication by pharmacists to conduct MedRec remains unstudied. This study explored patient perceptions of a pharmacist-led BPMDP using a telepresence robot. Time requirements, unintentional discharge medication discrepancies (UMD), programme inefficiencies/barriers and facilitators involved in pharmacist review of the discharge medication list and patient interviews were also described.

METHODS

This prospective cohort study enrolled adult patients admitted to a 12-bed community hospital at high risk of an ADE. Remote pharmacists reviewed the discharge prescription list, identified/resolved UMDs, and interviewed/counselled patients using a telepresence robot. Thereafter, patients completed an anonymous satisfaction questionnaire. Prescriber discharge UMDs were classified, and barriers/inefficiencies and facilitators were documented.

RESULTS

Nine patients completed an interview, with a 75% interview agreement rate. All patients were comfortable with the robot and 76% felt their care was better. With a median of 11 discharge medications/patient, the UMD rate was 78%; 71% had omitted medications, 43% involved a cardiovascular medication, 88% were due to a hospital system cause, and 43% were specifically due to an inaccurate best possible admission medication history. Median times for interview preparation, interview and UMD/drug therapy problem resolution were 45, 15 and 10 min, respectively.

CONCLUSION

Using a telepresence robot to provide pharmacist-led BPMDPs is acceptable to patients and an innovative, effective solution to identify/resolve UMDs.

摘要

简介

药物重整(MedRec)可降低预防用药相关不良事件(ADE)的风险。最佳可能的出院带药计划(BPMDP)是患者出院后将要服用的药物修订清单;药师审核可确保其准确性。对于许多医院来说,现场药师并不存在。通过药师实时视听通讯的移动机器人平台,扩展虚拟存在,以进行药物重整,这方面的研究尚属空白。本研究探讨了患者对药剂师主导的 BPMDP 使用远程呈现机器人的看法。还描述了药师对出院带药清单进行审核的时间要求、非故意出院用药差异(UMD)、程序效率低下/障碍以及促成因素,以及对患者的访谈。

方法

这项前瞻性队列研究纳入了在高危 ADE 社区医院的 12 张病床住院的成年患者。远程药师使用远程呈现机器人审查出院处方清单,识别/解决 UMD,并对患者进行访谈/咨询。之后,患者完成了匿名满意度问卷。对处方医生出院 UMD 进行分类,并记录障碍/效率低下和促成因素。

结果

9 名患者完成了访谈,访谈一致性率为 75%。所有患者都对机器人感到舒适,76%的患者认为他们的护理更好。每位患者平均有 11 种出院药物,UMD 率为 78%;71%的药物被遗漏,43%涉及心血管药物,88%是由于医院系统原因,43%是由于不准确的最佳入院药物史。访谈准备、访谈和 UMD/药物治疗问题解决的中位数时间分别为 45、15 和 10 分钟。

结论

使用远程呈现机器人提供药剂师主导的 BPMDP 是患者可以接受的,并且是一种创新、有效的解决方案,可用于识别/解决 UMD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验