Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States.
Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States.
Langmuir. 2021 Oct 26;37(42):12466-12475. doi: 10.1021/acs.langmuir.1c02161. Epub 2021 Oct 13.
We demonstrate that cation condensation can induce the collapse of surface-bound nucleic acids and that the electrochemical signal from a tethered redox molecule (methylene blue) upon collapse reports on nucleic acid identity, structure, and flexibility. Furthermore, the correlation of the electrochemical signal and structure is consistent with theoretical considerations of nucleic acid collapse. Changes in solution dielectric permittivity or the concentration of trivalent cations cause the structure of nucleic acids to become more compact due to an increase in attractive electrostatic interactions between the charged biopolymer backbone and multivalent ions in the solution. Consequently, the compaction of nucleic acids results in a change in the dynamics and location of the terminally appended redox marker, which is reflected in the faradaic current measured using cyclic voltammetry. In comparison to ssDNA, nucleic acid duplexes (dsDNA, DNA/peptide nucleic acid, and dsRNA) require nucleic-acid-composition-specific solution conditions for the collapse to occur. Moreover, the magnitude of current increase observed after the collapse is different for each nucleic structure, and we find here that these changes are dictated by physical parameters of the nucleic acids including the axial charge spacing and the periodicity of the helix. The work here aims to provide quantitative and predicative measures of the effects of the nucleic acid structure on the electrochemical signal produced from distal-end appended redox markers. This architecture is commonly employed in functional nucleic acid sensors and a better understanding of structure-to-signal correlations will enable the rational design of sensitive sensing architectures.
我们证明了阳离子凝聚可以诱导表面结合核酸的坍塌,并且附着的氧化还原分子(亚甲基蓝)在坍塌时的电化学信号报告了核酸的身份、结构和灵活性。此外,电化学信号和结构的相关性与核酸坍塌的理论考虑一致。溶液介电常数的变化或三价阳离子浓度的增加会导致核酸结构变得更加紧凑,因为带电荷的生物聚合物主链和溶液中的多价离子之间的吸引力静电相互作用增加。因此,核酸的紧凑化导致末端附加氧化还原标记物的动力学和位置发生变化,这反映在使用循环伏安法测量的法拉第电流中。与单链 DNA (ssDNA) 相比,核酸双链体(dsDNA、DNA/肽核酸和 dsRNA)需要特定于核酸组成的溶液条件才能发生坍塌。此外,坍塌后观察到的电流增加幅度对于每种核酸结构都不同,我们在这里发现这些变化由核酸的物理参数决定,包括轴向电荷间距和螺旋的周期性。这项工作旨在提供关于核酸结构对从末端附加氧化还原标记物产生的电化学信号的影响的定量和预测性度量。这种结构通常用于功能性核酸传感器,对结构与信号相关性的更好理解将能够实现敏感传感结构的合理设计。