Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States.
Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States.
Langmuir. 2022 Jun 14;38(23):7322-7330. doi: 10.1021/acs.langmuir.2c00840. Epub 2022 May 31.
The cation condensation-induced collapse of electrode-bound nucleic acids and the resulting change in the electrochemical signal is a useful tool to predict the structure and redox probe location of heterogeneous structures of surface-tethered DNA probes─a common architecture employed in the development of electrochemical sensors. In this paper, we measure the faradaic current of an appended redox molecule at the 3' position of the nucleic acid using cyclic voltammetry before and after nucleic acid collapse for various nucleic acid architectures and heterogeneous mixtures on the same electrode surface. The voltammetric peak current change with collapse correlates with the proximity of the redox molecules from the surface. For stem-loop probes, the terminal methylene blue is initially held closer to the surface, such that inducing collapse, by reducing the dielectric permittivity of the interrogation solution, results in a ∼30% increase in current. However, when incorporating pseudoknot probes that hold methylene blue further away from the electrode surface, the current change is much larger (∼120%), indicating a larger conformation change. Upon a 50:50 ratio of the two, we observe a change in current that relates to the ratiometric distribution of the probe used to make the surfaces. Additionally, using cyclic voltammetry, we find that the change between diffusion-limited and diffusion-independent peak currents is dependent upon the distinct structural characteristics of DNA probes on the surface (stem-loop or pseudoknot), as well as the ratios of different DNA probes on the surface. Thus, we demonstrate that the heterogeneous nature of DNA probes governs the corresponding electrochemical signals, which can lead to a better understanding on how to predict the structures of functional nucleic acids on electrode surfaces and how this affects surface-to-surface variability and electrochemical response.
带正电荷的离子凝聚导致电极结合的核酸发生塌陷,从而改变电化学信号,这是一种预测表面固定 DNA 探针异质结构(电化学传感器发展中常用的一种架构)的结构和氧化还原探针位置的有用工具。在本文中,我们使用循环伏安法在核酸塌陷前后测量了在相同电极表面上各种核酸结构和异质混合物中核酸 3' 位置上附加氧化还原分子的法拉第电流。与塌陷相关的伏安峰电流变化与氧化还原分子与表面的接近程度相关。对于茎环探针,末端亚甲基蓝最初更接近表面,因此通过降低检测溶液的介电常数来诱导塌陷,会导致电流增加约 30%。然而,当引入将亚甲基蓝保持在更远的电极表面的假结探针时,电流变化更大(约 120%),表明构象变化更大。当两种探针的比例为 50:50 时,我们观察到电流变化与用于制作表面的探针的比率分布相关。此外,使用循环伏安法,我们发现扩散限制和扩散独立峰电流之间的变化取决于表面上 DNA 探针的不同结构特征(茎环或假结),以及表面上不同 DNA 探针的比例。因此,我们证明了 DNA 探针的异质性控制着相应的电化学信号,这可以帮助我们更好地理解如何预测功能核酸在电极表面上的结构,以及这如何影响表面间的可变性和电化学响应。