Tibaldo L, Digel S W, Casandjian J M, Franckowiak A, Grenier I A, Jóhannesson G, Marshall D J, Moskalenko I V, Negro M, Orlando E, Porter T A, Reimer O, Strong A W
W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA.
Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette, France.
Astrophys J. 2015 Jul 10;807(2). doi: 10.1088/0004-637x/807/2/161. Epub 2015 Jul 9.
It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of -ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for -ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ~7 kpc above the Galactic plane. We achieve the first detection of IVCs in rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the -ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.
人们普遍认为,至少能量达到 PeV 的宇宙射线(CRs)起源于银河系。加速粒子被注入星际介质,在那里它们传播到银河系的最远端,包括周围的晕。到达太阳系的宇宙射线的组成可以直接测量,并已被用于推断宇宙射线传播的细节,这些细节被外推到整个银河系。相比之下,间接方法,如观测宇宙射线与星际气体相互作用产生的γ射线发射,已被用于直接探测整个银道面远处位置的宇宙射线密度。在本文中,我们使用大面积望远镜在 300 MeV 至 10 GeV 能量范围内的 73 个月数据,搜索位于银道面上方高达约 7 kpc 的几个高速和中速云(IVCs)中宇宙射线相互作用产生的γ射线发射。我们首次在γ射线中探测到中速云,并对其余目标的发射设定了上限,从而首次追踪了晕中宇宙射线核的分布。我们发现,在 97.5%的置信水平下,每 H 原子的γ射线发射率随着离银道面距离的增加而降低。这证实了相关能量的宇宙射线起源于银河系盘的观点。上部中速拱的发射率表明,在离银道面 2 kpc 范围内,宇宙射线密度下降了 50%。我们将我们的结果与宇宙射线传播模型的预测进行了比较。