文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定治疗相关性神经内分泌前列腺癌的新型诊断生物标志物。

Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer.

机构信息

Department of Urology, Peking University First Hospital Institute of Urology, National Urological Cancer Center, Peking University, Beijing, China.

出版信息

Pathol Oncol Res. 2021 Sep 27;27:1609968. doi: 10.3389/pore.2021.1609968. eCollection 2021.


DOI:10.3389/pore.2021.1609968
PMID:34646089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8503838/
Abstract

Therapy-related neuroendocrine prostate cancer (NEPC) is a lethal castration-resistant prostate cancer (CRPC) subtype that, at present, lacks well-characterized molecular biomarkers. The clinical diagnosis of this disease is dependent on biopsy and histological assessment: methods that are experience-based and easily misdiagnosed due to tumor heterogeneity. The development of robust diagnostic tools for NEPC may assist clinicians in making medical decisions on the choice of continuing anti-androgen receptor therapy or switching to platinum-based chemotherapy. Gene expression profiles and clinical characteristics data of 208 samples of metastatic CRPC, including castration-resistant prostate adenocarcinoma (CRPC-adeno) and castration-resistant neuroendocrine prostate adenocarcinoma (CRPC-NE), were obtained from the prad_su2c_2019 dataset. Weighted Gene Co-expression Network Analysis (WGCNA) was subsequently used to construct a free-scale gene co-expression network to study the interrelationship between the potential modules and clinical features of metastatic prostate adenocarcinoma and to identify hub genes in the modules. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a model to predict the clinical characteristics of CRPC-NE. The findings were then verified in the nepc_wcm_2016 dataset. A total of 51 co-expression modules were successfully constructed using WGCNA, of which three co-expression modules were found to be significantly associated with the neuroendocrine features and the NEPC score. In total, four novel genes, including NPTX1, PCSK1, ASXL3, and TRIM9, were all significantly upregulated in NEPC compared with the adenocarcinoma samples, and these genes were all associated with the neuroactive ligand receptor interaction pathway. Next, the expression levels of these four genes were used to construct an NEPC diagnosis model, which was successfully able to distinguish CRPC-NE from CRPC-adeno samples in both the training and the validation cohorts. Moreover, the values of the area under the receiver operating characteristic (AUC) were 0.995 and 0.833 for the training and validation cohorts, respectively. The present study identified four specific novel biomarkers for therapy-related NEPC, and these biomarkers may serve as an effective tool for the diagnosis of NEPC, thereby meriting further study.

摘要

治疗相关神经内分泌前列腺癌(NEPC)是一种致命的去势抵抗性前列腺癌(CRPC)亚型,目前缺乏特征明确的分子生物标志物。这种疾病的临床诊断依赖于活检和组织学评估:这些方法是基于经验的,并且由于肿瘤异质性很容易误诊。开发用于 NEPC 的强大诊断工具可能有助于临床医生在继续抗雄激素受体治疗或切换到铂类化疗之间做出医疗决策。

从 prad_su2c_2019 数据集获得了 208 个转移性 CRPC 样本的基因表达谱和临床特征数据,包括去势抵抗性前列腺腺癌(CRPC-adeno)和去势抵抗性神经内分泌前列腺腺癌(CRPC-NE)。随后使用加权基因共表达网络分析(WGCNA)构建了一个无尺度基因共表达网络,以研究转移性前列腺腺癌中潜在模块与临床特征之间的相互关系,并鉴定模块中的枢纽基因。此外,还使用最小绝对收缩和选择算子(LASSO)回归分析构建了预测 CRPC-NE 临床特征的模型。然后在 nepc_wcm_2016 数据集上验证了这些发现。

使用 WGCNA 成功构建了 51 个共表达模块,其中 3 个共表达模块与神经内分泌特征和 NEPC 评分显著相关。共有 4 个新基因,包括 NPTX1、PCSK1、ASXL3 和 TRIM9,在 NEPC 中与腺癌样本相比均显著上调,这些基因均与神经活性配体受体相互作用途径相关。接下来,使用这四个基因的表达水平构建了一个 NEPC 诊断模型,该模型能够成功区分训练和验证队列中的 CRPC-NE 和 CRPC-adeno 样本。此外,训练和验证队列的接收器工作特征(AUC)值分别为 0.995 和 0.833。

本研究鉴定了治疗相关 NEPC 的四个特定新型生物标志物,这些标志物可能成为 NEPC 诊断的有效工具,值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/224d58a4f493/pore-27-1609968-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/ef8368ea70d9/pore-27-1609968-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/2eebbcf45521/pore-27-1609968-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/b42324bb6921/pore-27-1609968-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/986a5afa1000/pore-27-1609968-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/7c23abe07931/pore-27-1609968-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/aa999798221a/pore-27-1609968-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/15c5a58fb868/pore-27-1609968-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/67743ec9656b/pore-27-1609968-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/224d58a4f493/pore-27-1609968-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/ef8368ea70d9/pore-27-1609968-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/2eebbcf45521/pore-27-1609968-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/b42324bb6921/pore-27-1609968-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/986a5afa1000/pore-27-1609968-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/7c23abe07931/pore-27-1609968-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/aa999798221a/pore-27-1609968-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/15c5a58fb868/pore-27-1609968-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/67743ec9656b/pore-27-1609968-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/770c/8503838/224d58a4f493/pore-27-1609968-g009.jpg

相似文献

[1]
Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer.

Pathol Oncol Res. 2021

[2]
Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with .

Clin Cancer Res. 2019-8-1

[3]
SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition.

Eur Urol. 2016-5-11

[4]
MicroRNA determinants of neuroendocrine differentiation in metastatic castration-resistant prostate cancer.

Oncogene. 2020-12

[5]
Novel biomarkers predict prognosis and drug-induced neuroendocrine differentiation in patients with prostate cancer.

Front Endocrinol (Lausanne). 2022

[6]
Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients.

Sci Rep. 2021-4-15

[7]
Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer.

Clin Cancer Res. 2021-2-1

[8]
Understanding the molecular regulators of neuroendocrine prostate cancer.

Adv Cancer Res. 2024

[9]
CDHu40: a novel marker gene set of neuroendocrine prostate cancer.

Brief Bioinform. 2024-9-23

[10]
Molecular model for neuroendocrine prostate cancer progression.

BJU Int. 2018-4-24

引用本文的文献

[1]
LSD1+8a is an RNA biomarker of neuroendocrine prostate cancer.

Neoplasia. 2025-5

[2]
CDHu40: a novel marker gene set of neuroendocrine prostate cancer.

Brief Bioinform. 2024-9-23

[3]
Computational drug discovery pipelines identify NAMPT as a therapeutic target in neuroendocrine prostate cancer.

Clin Transl Sci. 2024-9

[4]
Novel biomarkers predict prognosis and drug-induced neuroendocrine differentiation in patients with prostate cancer.

Front Endocrinol (Lausanne). 2022

[5]
Chromogranin A: a useful biomarker in castration-resistant prostate cancer.

World J Urol. 2023-2

[6]
Hsa_circ_0081069 facilitates tongue squamous cell carcinoma progression by modulating MAP2K4 expression via miR-634.

Odontology. 2023-4

[7]
Deep Learning-Based Multi-Omics Integration Robustly Predicts Relapse in Prostate Cancer.

Front Oncol. 2022-6-23

本文引用的文献

[1]
Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients.

Sci Rep. 2021-4-15

[2]
Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer.

JCI Insight. 2021-4-22

[3]
Prostate cancer.

Nat Rev Dis Primers. 2021-2-4

[4]
Clinical and Biological Features of Neuroendocrine Prostate Cancer.

Curr Oncol Rep. 2021-1-12

[5]
Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer.

Commun Biol. 2020-12-16

[6]
Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2.

J Pathol. 2021-1

[7]
TRIM9 overexpression promotes uterine leiomyoma cell proliferation and inhibits cell apoptosis via NF-κB signaling pathway.

Life Sci. 2020-7-15

[8]
Biomarkers That Differentiate Benign Prostatic Hyperplasia from Prostate Cancer: A Literature Review.

Cancer Manag Res. 2020-7-1

[9]
ASXL3 bridges BRD4 to BAP1 complex and governs enhancer activity in small cell lung cancer.

Genome Med. 2020-7-15

[10]
LIN28B promotes the development of neuroendocrine prostate cancer.

J Clin Invest. 2020-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索