Suppr超能文献

使用机器学习分类器和特征选择算法预测 Gd-EOB-DTPA 增强 MRI 肝胆期肝增强不足。

Prediction of insufficient hepatic enhancement during the Hepatobiliary phase of Gd-EOB DTPA-enhanced MRI using machine learning classifier and feature selection algorithms.

机构信息

Department of Radiology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea.

Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.

出版信息

Abdom Radiol (NY). 2022 Jan;47(1):161-173. doi: 10.1007/s00261-021-03308-0. Epub 2021 Oct 13.

Abstract

PURPOSE

The purpose of this study was to reveal the usefulness of machine learning classifier and feature selection algorithms for prediction of insufficient hepatic enhancement in the HBP.

METHODS

We retrospectively assessed 214 patients with chronic liver disease or liver cirrhosis who underwent MRI enhanced with Gd-EOB-DTPA. Various liver function tests, Child-Pugh score (CPS) and Model for End-stage Liver Disease Sodium (MELD-Na) score were collected as candidate predictors for insufficient hepatic enhancement. Insufficient hepatic enhancement was assessed using liver-to-portal vein signal intensity ratio and 5-level visual grading. The clinico-laboratory findings were compared using Student's t-test and Mann-Whitney U test. Relationships between the laboratory tests and insufficient hepatic enhancement were assessed using Pearson's and Spearman's rank correlation coefficient. Feature importance was assessed by Random UnderSampling boosting algorithms. The predictive models were constructed using decision tree(DT), k-nearest neighbor(KNN), random forest(RF), and support-vector machine(SVM) classifier algorithms. The performances of the prediction models were analyzed by calculating the area under the receiver operating characteristic curve(AUC).

RESULTS

Among four machine learning classifier algorithms using various feature combinations, SVM using total bilirubin(TB) and albumin(Alb) showed excellent predictive ability for insufficient hepatic enhancement(AUC = 0.93, [95% CI: 0.93-0.94]) and higher AUC value than conventional logistic regression(LR) model (AUC = 0.92, [95% CI; 0.92-0.93], predictive models using the MELD-Na (AUC = 0.90 [95% CI: 0.89-0.91]) and CPS (AUC = 0.89 [95% CI: 0.88-0.90]).

CONCLUSION

Machine learning-based classifier (i.e. SVM) and feature selection algorithms can be used to predict insufficient hepatic enhancement in the HBP before performing MRI.

摘要

目的

本研究旨在揭示机器学习分类器和特征选择算法在预测 HBP 中肝增强不足方面的作用。

方法

我们回顾性评估了 214 例接受 Gd-EOB-DTPA 增强 MRI 的慢性肝病或肝硬化患者。收集了各种肝功能检查、Child-Pugh 评分(CPS)和终末期肝病钠模型(MELD-Na)评分作为肝增强不足的候选预测因子。使用肝门静脉信号强度比和 5 级视觉分级评估肝增强不足。使用 Student's t 检验和 Mann-Whitney U 检验比较临床实验室结果。使用 Pearson 和 Spearman 秩相关系数评估实验室检查与肝增强不足的关系。通过随机欠采样提升算法评估特征重要性。使用决策树(DT)、k-最近邻(KNN)、随机森林(RF)和支持向量机(SVM)分类器算法构建预测模型。通过计算接收者操作特征曲线下的面积(AUC)分析预测模型的性能。

结果

在使用各种特征组合的四种机器学习分类器算法中,使用总胆红素(TB)和白蛋白(Alb)的 SVM 对肝增强不足具有出色的预测能力(AUC=0.93,[95%CI:0.93-0.94]),且 AUC 值高于传统逻辑回归(LR)模型(AUC=0.92,[95%CI;0.92-0.93]),使用 MELD-Na(AUC=0.90[95%CI:0.89-0.91])和 CPS(AUC=0.89[95%CI:0.88-0.90])的预测模型。

结论

基于机器学习的分类器(即 SVM)和特征选择算法可用于预测 MRI 前 HBP 中的肝增强不足。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验