Suppr超能文献

钆塞酸二钠增强MRI图像特征及影像组学特征联合机器学习用于评估功能性肝储备

Gd-EOB-DTPA-enhanced MRI Image Characteristics and Radiomics Characteristics Combined with Machine Learning for Assessment of Functional Liver Reserve.

作者信息

Zhu Xin-Yu, Zhang Yu-Rou, Guo Li

机构信息

Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, China.

Depaartment of Radiology, The Second Affiliated Hospital of Kunming Medical University, China.

出版信息

Curr Med Imaging. 2024;20:e15734056281405. doi: 10.2174/0115734056281405240104155500.

Abstract

OBJECTIVE

To investigate the feasibility of image characteristics and radiomics combined with machine learning based on Gd-EOB-DTPA-enhanced MRI for functional liver reserve assessment in cirrhotic patients.

MATERIALS AND METHODS

123 patients with cirrhosis were retrospectively analyzed; all our patients underwent pre-contrast MRI, triphasic (arterial phase, venous phase, equilibrium phase) Gd-EOB-DTPA dynamic enhancement and hepatobiliary phase (20 minutes delayed). The relative enhancement (RE) of the patient's liver, the liver-spleen signal ratio in the hepatobiliary phase (SI liver/ spleen), the liver-vertical muscle signal ratio in the hepatobiliary phase (SI liver/ muscle), the bile duct signal intensity contrast ratio (SIR), and the radiomics features were evaluated. The support vector machine (SVM) was used as the core of machine learning to construct the liver function classification model using image and radiomics characteristics, respectively.

RESULTS

The area under the curve was the largest in SIR to identify Child-Pugh group A versus Child-Pugh group B+C in the image characteristics, AUC = 0.740, and Perc. 10% to identify Child-Pugh group A versus Child-Pugh group B+C in the radiomics characteristics, AUC = 0.9337. The efficacy of the SVM model constructed using radiomics characteristics was better, with an area under the curve of 0.918, a sensitivity of 95.45%, a specificity of 80.00%, and an accuracy of 89.19%.

CONCLUSION

The image and radiomics characteristics based on Gd-EOB-DTPA-enhanced MRI can reflect liver function, and the model constructed based on radiomics characteristics combined with machine learning methods can better assess functional liver reserve.

摘要

目的

探讨基于钆塞酸二钠(Gd-EOB-DTPA)增强磁共振成像(MRI)的图像特征和影像组学结合机器学习用于评估肝硬化患者功能性肝储备的可行性。

材料与方法

回顾性分析123例肝硬化患者;所有患者均接受了平扫MRI、钆塞酸二钠动态增强三期扫描(动脉期、静脉期、平衡期)及肝胆期(延迟20分钟)扫描。评估患者肝脏的相对强化(RE)、肝胆期肝脾信号比(SI肝/脾)、肝胆期肝竖脊肌信号比(SI肝/肌)、胆管信号强度对比率(SIR)以及影像组学特征。以支持向量机(SVM)作为机器学习的核心,分别利用图像特征和影像组学特征构建肝功能分类模型。

结果

在图像特征方面,用于鉴别Child-Pugh A组与Child-Pugh B+C组时,SIR的曲线下面积最大,AUC = 0.740;在影像组学特征方面,Perc. 10%鉴别Child-Pugh A组与Child-Pugh B+C组时的AUC = 0.9337。利用影像组学特征构建的SVM模型效果更佳,曲线下面积为0.918,灵敏度为95.45%,特异度为80.00%,准确率为89.19%。

结论

基于钆塞酸二钠增强MRI的图像和影像组学特征能够反映肝功能,基于影像组学特征结合机器学习方法构建的模型能够更好地评估功能性肝储备。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验