文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SLC1A5 为小鼠的骨骼发育提供谷氨酰胺和天冬酰胺。

SLC1A5 provides glutamine and asparagine necessary for bone development in mice.

机构信息

Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States.

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.

出版信息

Elife. 2021 Oct 14;10:e71595. doi: 10.7554/eLife.71595.


DOI:10.7554/eLife.71595
PMID:34647520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8553342/
Abstract

Osteoblast differentiation is sequentially characterized by high rates of proliferation followed by increased protein and matrix synthesis, processes that require substantial amino acid acquisition and production. How osteoblasts obtain or maintain intracellular amino acid production is poorly understood. Here, we identify SLC1A5 as a critical amino acid transporter during bone development. Using a genetic and metabolomic approach, we show SLC1A5 acts cell autonomously to regulate protein synthesis and osteoblast differentiation. SLC1A5 provides both glutamine and asparagine which are essential for osteoblast differentiation. Mechanistically, glutamine and to a lesser extent asparagine support amino acid biosynthesis. Thus, osteoblasts depend on to provide glutamine and asparagine, which are subsequently used to produce non-essential amino acids and support osteoblast differentiation and bone development.

摘要

成骨细胞分化的特征是增殖率高,随后蛋白和基质合成增加,这些过程需要大量的氨基酸获取和产生。然而,成骨细胞如何获得或维持细胞内氨基酸的产生还知之甚少。在这里,我们鉴定出 SLC1A5 是骨发育过程中关键的氨基酸转运蛋白。通过遗传和代谢组学方法,我们发现 SLC1A5 能够自主调节蛋白合成和成骨细胞分化。SLC1A5 提供谷氨酰胺和天冬酰胺,这对于成骨细胞分化是必不可少的。从机制上讲,谷氨酰胺,在较小程度上天冬酰胺,支持氨基酸的生物合成。因此,成骨细胞依赖 SLC1A5 来提供谷氨酰胺和天冬酰胺,随后这些氨基酸被用于产生非必需氨基酸,并支持成骨细胞分化和骨发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/09dc47c82a75/elife-71595-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/0350b324c88c/elife-71595-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/34bfa9b8fbe4/elife-71595-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/fe72506de3bf/elife-71595-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/86315e6cde45/elife-71595-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/6e0e9ccf2eae/elife-71595-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/72dc987ecb23/elife-71595-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/92aa40f81fd3/elife-71595-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/e2bb09b9dab6/elife-71595-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/b6feed0de880/elife-71595-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/e69a46b22e76/elife-71595-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/666655911c96/elife-71595-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/25d02b40469b/elife-71595-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/09dc47c82a75/elife-71595-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/0350b324c88c/elife-71595-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/34bfa9b8fbe4/elife-71595-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/fe72506de3bf/elife-71595-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/86315e6cde45/elife-71595-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/6e0e9ccf2eae/elife-71595-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/72dc987ecb23/elife-71595-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/92aa40f81fd3/elife-71595-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/e2bb09b9dab6/elife-71595-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/b6feed0de880/elife-71595-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/e69a46b22e76/elife-71595-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/666655911c96/elife-71595-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/25d02b40469b/elife-71595-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/8553342/09dc47c82a75/elife-71595-fig6-figsupp1.jpg

相似文献

[1]
SLC1A5 provides glutamine and asparagine necessary for bone development in mice.

Elife. 2021-10-14

[2]
Glutamine addiction activates polyglutamine-based nanocarriers delivering therapeutic siRNAs to orthotopic lung tumor mediated by glutamine transporter SLC1A5.

Biomaterials. 2018-8-19

[3]
TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake.

Circ Res. 2019-4-26

[4]
SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation.

Elife. 2022-3-9

[5]
SLC1A5 Silencing Inhibits Esophageal Cancer Growth via Cell Cycle Arrest and Apoptosis.

Cell Physiol Biochem. 2018

[6]
A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells.

Cell Metab. 2020-2-4

[7]
SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice.

Aging Cell. 2019-3-25

[8]
1,25-Dihydroxyvitamin D inhibits glutamine metabolism in Harvey-ras transformed MCF10A human breast epithelial cell.

J Steroid Biochem Mol Biol. 2016-10

[9]
Impairment of Myocardial Glutamine Homeostasis Induced By Suppression of the Amino Acid Carrier SLC1A5 in Failing Myocardium.

Circ Heart Fail. 2019-12

[10]
Targeting SLC1A5 blocks cell proliferation through inhibition of mTORC1 in arsenite-treated human uroepithelial cells.

Toxicol Lett. 2021-7-1

引用本文的文献

[1]
Taurine Transporter SLC6A6 Expression Promotes Mesenchymal Stromal Cell Function.

bioRxiv. 2025-6-27

[2]
Effects of BCAA supplementation on plasma and mare's milk amino acid contents in mares and growth performance of suckling foals.

Front Vet Sci. 2025-5-26

[3]
Current cutting-edge omics techniques on musculoskeletal tissues and diseases.

Bone Res. 2025-6-9

[4]
Role of amino acid metabolism in osteoporosis: Effects on the bone microenvironment and treatment strategies (Review).

Mol Med Rep. 2025-8

[5]
Sex-specific effects of exogenous asparagine on colorectal tumor growth, 17β-estradiol levels, and aromatase.

Pharmacol Res. 2025-5

[6]
Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder.

Front Endocrinol (Lausanne). 2025-1-16

[7]
Epigenome-wide mediation analysis of the relationship between psychosocial stress and cardiometabolic risk factors in the Health and Retirement Study (HRS).

Clin Epigenetics. 2024-12-18

[8]
Energy metabolism in osteoprogenitors and osteoblasts: Role of the pentose phosphate pathway.

J Biol Chem. 2025-1

[9]
Metabolic reprogramming in skeletal cell differentiation.

Bone Res. 2024-10-11

[10]
Glutaminolysis provides nucleotides and amino acids to regulate osteoclast differentiation in mice.

EMBO Rep. 2024-10

本文引用的文献

[1]
Asparagine enhances LCK signalling to potentiate CD8 T-cell activation and anti-tumour responses.

Nat Cell Biol. 2021-1

[2]
Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation.

J Cell Sci. 2021-1-11

[3]
Glutamine Metabolism in Osteoprogenitors Is Required for Bone Mass Accrual and PTH-Induced Bone Anabolism in Male Mice.

J Bone Miner Res. 2021-3

[4]
Malic Enzyme Couples Mitochondria with Aerobic Glycolysis in Osteoblasts.

Cell Rep. 2020-9-8

[5]
The Amino Acid Sensor Eif2ak4/GCN2 Is Required for Proliferation of Osteoblast Progenitors in Mice.

J Bone Miner Res. 2020-10

[6]
Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells.

Cell Metab. 2019-2-14

[7]
Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells.

Cancer Cell. 2019-2-11

[8]
Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells.

Cancer Cell. 2018-11-12

[9]
The role of ASCT2 in cancer: A review.

Eur J Pharmacol. 2018-7-17

[10]
Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours.

Nat Cell Biol. 2018-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索