Hou Haodi, Huo Jing, Wu Jing, Lai Yu-Kun, Gao Yang
IEEE Trans Image Process. 2021;30:8644-8657. doi: 10.1109/TIP.2021.3118984. Epub 2021 Oct 20.
Given an input face photo, the goal of caricature generation is to produce stylized, exaggerated caricatures that share the same identity as the photo. It requires simultaneous style transfer and shape exaggeration with rich diversity, and meanwhile preserving the identity of the input. To address this challenging problem, we propose a novel framework called Multi-Warping GAN (MW-GAN), including a style network and a geometric network that are designed to conduct style transfer and geometric exaggeration respectively. We bridge the gap between the style/landmark space and their corresponding latent code spaces by a dual way design, so as to generate caricatures with arbitrary styles and geometric exaggeration, which can be specified either through random sampling of latent code or from a given caricature sample. Besides, we apply identity preserving loss to both image space and landmark space, leading to a great improvement in quality of generated caricatures. Experiments show that caricatures generated by MW-GAN have better quality than existing methods.
给定一张输入的面部照片,生成漫画的目标是生成具有风格化、夸张效果且与照片具有相同身份特征的漫画。这需要同时进行风格迁移和形状夸张,且具有丰富的多样性,同时还要保留输入的身份特征。为了解决这个具有挑战性的问题,我们提出了一种名为多扭曲生成对抗网络(MW-GAN)的新颖框架,它包括一个风格网络和一个几何网络,分别用于进行风格迁移和几何夸张。我们通过双向设计弥合了风格/地标空间与其相应的潜在代码空间之间的差距,以便生成具有任意风格和几何夸张效果的漫画,这些效果既可以通过潜在代码的随机采样指定,也可以从给定的漫画样本中指定。此外,我们在图像空间和地标空间中都应用了身份保留损失,从而极大地提高了生成漫画的质量。实验表明,MW-GAN生成的漫画质量优于现有方法。