Forbes Jeffrey M, Zhang Xiaoli, Heelis Roderick, Stoneback Russell, Englert Christoph R, Harlander John M, Harding Brian J, Marr Kenneth D, Makela Jonathan J, Immel Thomas J
Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA.
William B. Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX, USA.
J Geophys Res Space Phys. 2021 Jun;126(6). doi: 10.1029/2020ja028927. Epub 2021 May 31.
Coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and total ion densities (:=Ne, electron density) are analyzed during January 1-21, 2020 to reveal the relationship between neutral winds and ionospheric variability on a day-to-day basis. Atmosphere-ionosphere (A-I) connectivity inevitably involves a spectrum of planetary waves (PWs), tides and secondary waves due to wave-wave nonlinear interactions. To provide a definitive attribution of dynamical origins, the current study focuses on a time interval when the longitudinal wave-4 component of the E-region winds is dominated by the eastward-propagating diurnal tide with zonal wavenumber = -3 (DE3). DE3 is identified in winds and ionospheric parameters through its characteristic dependence on local solar time and longitude as ICON's orbit precesses. Superimposed on this trend are large variations in low-latitude DE3 wave-4 zonal winds (±40 ms) and topside F-region equatorial vertical drifts at periods consistent with 2-days and 6-days PWs, and a ~3-day ultra-fast Kelvin wave (UFKW), coexisting during this time interval; the DE3 winds, dynamo electric fields, and drifts are modulated by these waves. Wave-4 variability in Ne is of order 25%-35%, but the origins are more complex, likely additionally reflecting transport by ~20-25 ms wave-4 in-situ winds containing strong signatures of DE3 interactions with ambient diurnal Sun-synchronous winds and ion drag. These results are the first to show a direct link between day-to-day wave-4 variability in contemporaneously measured E-region neutral winds and F-region ionospheric drifts and electron densities.
2020年1月1日至21日期间,对重合电离层连接探测器(ICON)所测量的中性风、等离子体漂移和总离子密度(:=Ne,电子密度)进行了分析,以揭示日常中性风与电离层变化之间的关系。大气-电离层(A-I)连通性不可避免地涉及一系列行星波(PW)、潮汐以及由于波-波非线性相互作用产生的二次波。为了明确动力学起源的归属,当前研究聚焦于一个时间间隔,在此期间E区风的纵向波4分量主要由向东传播的纬向波数 = -3的周日潮汐(DE3)主导。随着ICON轨道的进动,通过其对当地太阳时和经度的特征依赖性,在风和电离层参数中识别出DE3。叠加在这一趋势上的是低纬度DE3波4纬向风(±40米/秒)和F区顶部赤道垂直漂移的大幅变化,其周期与2天和6天的行星波以及一个约3天的超快开尔文波(UFKW)一致,这些在该时间间隔内共存;DE3风、发电机电场和漂移受到这些波的调制。Ne中的波4变化约为25%-35%,但其起源更为复杂,可能还反映了由约20-25米/秒的波4原地风引起的输运,这些风中含有DE3与周围周日太阳同步风及离子拖曳相互作用的强烈特征。这些结果首次表明,在同时测量的E区中性风和F区电离层漂移及电子密度中,日常波4变化之间存在直接联系。