Suppr超能文献

从电离层连接观测站(ICON)视角看大气-电离层(A-I)耦合:行星波(PW)-潮汐相互作用导致的逐日变化

Atmosphere-Ionosphere (A-I) Coupling as Viewed by ICON: Day-to-Day Variability Due to Planetary Wave (PW)-Tide Interactions.

作者信息

Forbes Jeffrey M, Zhang Xiaoli, Heelis Roderick, Stoneback Russell, Englert Christoph R, Harlander John M, Harding Brian J, Marr Kenneth D, Makela Jonathan J, Immel Thomas J

机构信息

Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA.

William B. Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX, USA.

出版信息

J Geophys Res Space Phys. 2021 Jun;126(6). doi: 10.1029/2020ja028927. Epub 2021 May 31.

Abstract

Coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and total ion densities (:=Ne, electron density) are analyzed during January 1-21, 2020 to reveal the relationship between neutral winds and ionospheric variability on a day-to-day basis. Atmosphere-ionosphere (A-I) connectivity inevitably involves a spectrum of planetary waves (PWs), tides and secondary waves due to wave-wave nonlinear interactions. To provide a definitive attribution of dynamical origins, the current study focuses on a time interval when the longitudinal wave-4 component of the E-region winds is dominated by the eastward-propagating diurnal tide with zonal wavenumber = -3 (DE3). DE3 is identified in winds and ionospheric parameters through its characteristic dependence on local solar time and longitude as ICON's orbit precesses. Superimposed on this trend are large variations in low-latitude DE3 wave-4 zonal winds (±40 ms) and topside F-region equatorial vertical drifts at periods consistent with 2-days and 6-days PWs, and a ~3-day ultra-fast Kelvin wave (UFKW), coexisting during this time interval; the DE3 winds, dynamo electric fields, and drifts are modulated by these waves. Wave-4 variability in Ne is of order 25%-35%, but the origins are more complex, likely additionally reflecting transport by ~20-25 ms wave-4 in-situ winds containing strong signatures of DE3 interactions with ambient diurnal Sun-synchronous winds and ion drag. These results are the first to show a direct link between day-to-day wave-4 variability in contemporaneously measured E-region neutral winds and F-region ionospheric drifts and electron densities.

摘要

2020年1月1日至21日期间,对重合电离层连接探测器(ICON)所测量的中性风、等离子体漂移和总离子密度(:=Ne,电子密度)进行了分析,以揭示日常中性风与电离层变化之间的关系。大气-电离层(A-I)连通性不可避免地涉及一系列行星波(PW)、潮汐以及由于波-波非线性相互作用产生的二次波。为了明确动力学起源的归属,当前研究聚焦于一个时间间隔,在此期间E区风的纵向波4分量主要由向东传播的纬向波数 = -3的周日潮汐(DE3)主导。随着ICON轨道的进动,通过其对当地太阳时和经度的特征依赖性,在风和电离层参数中识别出DE3。叠加在这一趋势上的是低纬度DE3波4纬向风(±40米/秒)和F区顶部赤道垂直漂移的大幅变化,其周期与2天和6天的行星波以及一个约3天的超快开尔文波(UFKW)一致,这些在该时间间隔内共存;DE3风、发电机电场和漂移受到这些波的调制。Ne中的波4变化约为25%-35%,但其起源更为复杂,可能还反映了由约20-25米/秒的波4原地风引起的输运,这些风中含有DE3与周围周日太阳同步风及离子拖曳相互作用的强烈特征。这些结果首次表明,在同时测量的E区中性风和F区电离层漂移及电子密度中,日常波4变化之间存在直接联系。

相似文献

1
Atmosphere-Ionosphere (A-I) Coupling as Viewed by ICON: Day-to-Day Variability Due to Planetary Wave (PW)-Tide Interactions.
J Geophys Res Space Phys. 2021 Jun;126(6). doi: 10.1029/2020ja028927. Epub 2021 May 31.
2
Q2DW-Tide and -Ionosphere Interactions as Observed From ICON and Ground-Based Radars.
J Geophys Res Space Phys. 2021 Nov;126(11). doi: 10.1029/2021ja029961. Epub 2021 Nov 1.
3
Variations in the ionosphere-thermosphere system from tides, ultra-fast Kelvin waves, and their interactions.
Adv Space Res. 2019 Nov 15;64(10):1841-1853. doi: 10.1016/j.asr.2019.08.015. Epub 2019 Aug 23.
4
Day-to-Day Variability of the Semidiurnal Tide in the F-Region Ionosphere During the January 2021 SSW From COSMIC-2 and ICON.
Geophys Res Lett. 2022 Sep 16;49(17):e2022GL100369. doi: 10.1029/2022GL100369. Epub 2022 Sep 7.
5
Evaluation of Atmospheric 3-Day Waves as a Source of Day-to-Day Variation of the Ionospheric Longitudinal Structure.
Geophys Res Lett. 2021 Aug;48(15). doi: 10.1029/2021gl094877. Epub 2021 Aug 6.
6
Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere.
J Geophys Res Space Phys. 2014 Jun;119(6):4786-4804. doi: 10.1002/2014JA019936. Epub 2014 Jun 2.
8
Regulation of ionospheric plasma velocities by thermospheric winds.
Nat Geosci. 2021 Dec;14:893-898. doi: 10.1038/s41561-021-00848-4. Epub 2021 Nov 29.
9
Tidal Wave-Driven Variability in the Mars Ionosphere-Thermosphere System.
Atmosphere (Basel). 2020 May;11(5):521. doi: 10.3390/atmos11050521. Epub 2020 May 19.

引用本文的文献

1
The Ionospheric Connection Explorer - Prime Mission Review.
Space Sci Rev. 2023;219(5):41. doi: 10.1007/s11214-023-00975-x. Epub 2023 Jul 17.

本文引用的文献

1
The Ionospheric Connection Explorer Mission: Mission Goals and Design.
Space Sci Rev. 2018;214. doi: 10.1007/s11214-017-0449-2. Epub 2017 Dec 6.
2
Simulated Trends in Ionosphere-Thermosphere Climate Due to Predicted Main Magnetic Field Changes From 2015 to 2065.
J Geophys Res Space Phys. 2020 Mar;125(3):e2019JA027738. doi: 10.1029/2019JA027738. Epub 2020 Mar 13.
3
Sensitivity study for ICON tidal analysis.
Prog Earth Planet Sci. 2020;7(1):18. doi: 10.1186/s40645-020-00330-6. Epub 2020 May 22.
4
Ion Velocity Measurements for the Ionospheric Connections Explorer.
Space Sci Rev. 2017 Oct;212(1-2):615-629. doi: 10.1007/s11214-017-0383-3. Epub 2017 Jul 20.
5
The MIGHTI Wind Retrieval Algorithm: Description and Verification.
Space Sci Rev. 2017 Oct;212(1-2):585-600. doi: 10.1007/s11214-017-0359-3. Epub 2017 Apr 10.
6
Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration.
Space Sci Rev. 2017 Oct;212(1-2):553-584. doi: 10.1007/s11214-017-0358-4. Epub 2017 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验