Immel Thomas J, England Scott L, Harding Brian J, Wu Yen-Jung, Maute Astrid, Cullens Chihoko, Englert Christoph R, Mende Stephen B, Heelis Roderick A, Frey Harald U, Korpela Eric J, Stephan Andrew W, Frey Sabine, Stevens Michael H, Makela Jonathan J, Kamalabadi Farzad, Triplett Colin C, Forbes Jeffrey M, McGinness Emma, Gasque L Claire, Harlander John M, Gérard Jean-C, Hubert Benoit, Huba Joseph D, Meier Robert R, Roberts Bryce
Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, 94720-7450 CA USA.
Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA.
Space Sci Rev. 2023;219(5):41. doi: 10.1007/s11214-023-00975-x. Epub 2023 Jul 17.
The two-year prime mission of the NASA Ionospheric Connection Explorer (ICON) is complete. The baseline operational and scientific objectives have been met and exceeded, as detailed in this report. In October of 2019, ICON was launched into an orbit that provides its instruments the capability to deliver near-continuous measurements of the densest plasma in Earth's space environment. Through collection of a key set of in-situ and remote sensing measurements that are, by virtue of a detailed mission design, uniquely synergistic, ICON enables completely new investigations of the mechanisms that control the behavior of the ionosphere-thermosphere system under both geomagnetically quiet and active conditions. In a two-year period that included a deep solar minimum, ICON has elucidated a number of remarkable effects in the ionosphere attributable to energetic inputs from the lower and middle atmosphere, and shown how these are transmitted from the edge of space to the peak of plasma density above. The observatory operated in a period of low activity for 2 years and then for a year with increasing solar activity, observing the changing balance of the impacts of lower and upper atmospheric drivers on the ionosphere.
美国国家航空航天局电离层连接探测器(ICON)的两年主要任务已经完成。本报告详细介绍了其基线运行和科学目标已经实现并超出预期。2019年10月,ICON被发射到一个轨道,使其仪器能够对地球空间环境中密度最大的等离子体进行近乎连续的测量。通过收集一组关键的原位和遥感测量数据,凭借详细的任务设计,这些测量数据具有独特的协同作用,ICON能够对在地磁平静和活跃条件下控制电离层-热层系统行为的机制进行全新的研究。在包括深度太阳极小期的两年时间里,ICON阐明了电离层中一些可归因于来自低层和中层大气能量输入的显著效应,并展示了这些效应是如何从空间边缘传输到上方等离子体密度峰值处的。该天文台在低活动期运行了两年,然后在太阳活动增加的情况下又运行了一年,观测了低层和高层大气驱动因素对电离层影响的变化平衡。