Suppr超能文献

胶质瘤中的肿瘤免疫微环境图谱确定了一种预后和免疫治疗特征。

Tumor Immune Microenvironment Landscape in Glioma Identifies a Prognostic and Immunotherapeutic Signature.

作者信息

Zhang Chunyu, Guo Lirui, Su Zhongzhou, Luo Na, Tan Yinqiu, Xu Pengfei, Ye Liguo, Tong Shiao, Liu Haitao, Li Xiaobin, Chen Qianxue, Tian Daofeng

机构信息

Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China.

Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China.

出版信息

Front Cell Dev Biol. 2021 Sep 28;9:717601. doi: 10.3389/fcell.2021.717601. eCollection 2021.

Abstract

The tumor immune microenvironment (TIME) has been recognized to be associated with sensitivity to immunotherapy and patient prognosis. Recent research demonstrates that assessing the TIME patterns on large-scale samples will expand insights into TIME and will provide guidance to formulate immunotherapy strategies for tumors. However, until now, thorough research has not yet been reported on the immune infiltration landscape of glioma. Herein, the CIBERSORT algorithm was used to unveil the TIME landscape of 1,975 glioma observations. Three TIME subtypes were established, and the TIMEscore was calculated by least absolute shrinkage and selection operator (LASSO)-Cox analysis. The high TIMEscore was distinguished by an elevated tumor mutation burden (TMB) and activation of immune-related biological process, such as IL6-JAK-STAT3 signaling and interferon gamma (IFN-γ) response, which may demonstrate that the patients with high TIMEscore were more sensitive to immunotherapy. Multivariate analysis revealed that the TIMEscore could strongly and independently predict the prognosis of gliomas [Chinese Glioma Genome Atlas (CGGA) cohort: hazard ratio (HR): 2.134, < 0.001; Gravendeel cohort: HR: 1.872, < 0.001; Kamoun cohort: HR: 1.705, < 0.001; The Cancer Genome Atlas (TCGA) cohort: HR: 2.033, < 0.001; the combined cohort: HR: 1.626, < 0.001], and survival advantage was evident among those who received chemotherapy. Finally, we validated the performance of the signature in human tissues from Wuhan University (WHU) dataset (HR: 15.090, = 0.008). Our research suggested that the TIMEscore could be applied as an effective predictor for adjuvant therapy and prognosis assessment.

摘要

肿瘤免疫微环境(TIME)已被认为与免疫治疗敏感性及患者预后相关。近期研究表明,评估大规模样本中的TIME模式将拓展对TIME的认识,并为制定肿瘤免疫治疗策略提供指导。然而,迄今为止,尚未有关于胶质瘤免疫浸润格局的深入研究报道。在此,我们使用CIBERSORT算法揭示了1975例胶质瘤样本的TIME格局。建立了三种TIME亚型,并通过最小绝对收缩和选择算子(LASSO)-Cox分析计算了TIMEscore。高TIMEscore的特征是肿瘤突变负荷(TMB)升高以及免疫相关生物学过程的激活,如IL6-JAK-STAT3信号通路和干扰素γ(IFN-γ)反应,这可能表明高TIMEscore的患者对免疫治疗更敏感。多变量分析显示,TIMEscore能够强有力且独立地预测胶质瘤的预后[中国胶质瘤基因组图谱(CGGA)队列:风险比(HR):2.134,<0.001;Gravendeel队列:HR:1.872,<0.001;Kamoun队列:HR:1.705,<0.001;癌症基因组图谱(TCGA)队列:HR:2.033,<0.001;联合队列:HR:1.626,<0.001],并且接受化疗的患者具有明显的生存优势。最后,我们在武汉大学(WHU)数据集的人体组织中验证了该特征的性能(HR:15.090,=0.008)。我们的研究表明,TIMEscore可作为辅助治疗和预后评估的有效预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f823/8507498/a742a190de41/fcell-09-717601-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验