Conrad Alan R, Hansen Nils, Jasper Ahren W, Thomason Natasha K, Hidaldo-Rodrigues Laura, Treshock Sean P, Popolan-Vaida Denisia M
Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA.
Phys Chem Chem Phys. 2021 Oct 27;23(41):23554-23566. doi: 10.1039/d1cp03126k.
Uni- and bi-molecular reactions involving Criegee intermediates (CIs) have been the focus of many studies due to the role these molecules play in atmospheric chemistry. The reactivity of CIs is known to strongly depend on their structure. The reaction network of the second simplest CI, acetaldehyde oxide (CHCHOO), is investigated in this work in an atmospheric pressure jet-stirred reactor (JSR) during the ozonolysis of -2-butene to explore the kinetic pathways relevant to atmospheric chemistry and low-temperature combustion. The mole fraction profiles of reactants, intermediates, and final products are determined by means of molecular-beam mass spectrometry in conjunction with single-photon ionization employing tunable synchrotron-generated vacuum ultraviolet radiation. A network of CI reactions is identified in the temperature region below 600 K, characterized by CI addition to -2-butene, water, formaldehyde, formic acid, and methanol. No sequential additions of the CHCHOO CI are observed, in contrast with the reactivity of the simplest CI (HCOO) and the earlier observation of an extensive reaction network with up to four HCOO sequential additions (, 2019, , 7341-7357). Experimental photoionization efficiency scans recorded at 300 K and 425 K and threshold energy calculations lead to the identification and quantification of previously elusive intermediates, such as ketohydroperoxide and hydroperoxide species. Specifically, the CH + O adduct is identified as a ketohydroperoxide (KHP, 3-hydroperoxybutan-2-one, CHC(O)CH(CH)OOH), while hydroxyacetaldehyde (glycolaldehyde, HCOCHOH) formation is attributed to unimolecular isomerization of the CIs. Other hydroperoxide species such as methyl hydroperoxide (CHOOH), ethyl hydroperoxide (CHOOH), butyl hydroperoxide (OOH), hydroperoxyl acetaldehyde (HOOCHCHO), hydroxyethyl hydroperoxide (CHCH(OH)OOH), but-1-enyl-3-hydroperoxide, and 4-hydroxy-3-methylpentan-2-one (HOCH(CH)CH(CH)C(O)CH) are also identified. Detection of additional oxygenated species such as methanol, ethanol, ketene, and aldehydes suggests multiple active oxidation routes. These results provide additional evidence that CIs are key intermediates of the ozone-unsaturated hydrocarbon reactions providing critical inputs for improved kinetics models.
由于克里奇中间体(CIs)在大气化学中所起的作用,涉及这些分子的单分子和双分子反应一直是许多研究的重点。已知CIs的反应活性强烈依赖于它们的结构。在这项工作中,在常压射流搅拌反应器(JSR)中研究了第二简单的CI——乙醛氧化物(CHCHOO)在-2-丁烯臭氧化过程中的反应网络,以探索与大气化学和低温燃烧相关的动力学途径。反应物、中间体和最终产物的摩尔分数分布通过分子束质谱结合可调谐同步加速器产生的真空紫外辐射的单光子电离来确定。在低于600 K的温度区域内确定了一个CI反应网络,其特征是CI加成到-2-丁烯、水、甲醛、甲酸和甲醇上。与最简单的CI(HCOO)的反应活性以及早期观察到的多达四次HCOO连续加成的广泛反应网络(,2019,,7341 - 7357)相反,未观察到CHCHOO CI的连续加成。在300 K和425 K记录的实验光电离效率扫描以及阈值能量计算导致了对以前难以捉摸的中间体的识别和定量,例如酮过氧化物和过氧化物物种。具体而言,CH + O加合物被鉴定为酮过氧化物(KHP,3-氢过氧丁-2-酮,CHC(O)CH(CH)OOH),而羟基乙醛(乙醇醛,HCOCHOH)的形成归因于CIs的单分子异构化。还鉴定了其他过氧化物物种,如甲基过氧化物(CHOOH)、乙基过氧化物(CHOOH)、丁基过氧化物(OOH)、氢过氧乙醛(HOOCHCHO)、羟乙基过氧化物(CHCH(OH)OOH)、丁-1-烯基-3-过氧化物和4-羟基-3-甲基戊-2-酮(HOCH(CH)CH(CH)C(O)CH)。对甲醇、乙醇、乙烯酮和醛等其他含氧化合物的检测表明存在多种活性氧化途径。这些结果提供了额外的证据,证明CIs是臭氧-不饱和烃反应的关键中间体,为改进动力学模型提供了关键输入。