Lin Long, Li Haobo, Wang Yi, Li Hefei, Wei Pengfei, Nan Bing, Si Rui, Wang Guoxiong, Bao Xinhe
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
University of Chinese Academy of Sciences, Beijing, 100039, China.
Angew Chem Int Ed Engl. 2021 Dec 13;60(51):26582-26586. doi: 10.1002/anie.202113135. Epub 2021 Nov 8.
Reaction temperature is an important parameter to tune the selectivity and activity of electrochemical CO reduction reaction (CO RR) due to different thermodynamics of CO RR and competitive hydrogen evolution reaction (HER). In this work, temperature-dependent CO RR over Fe-N-C and Ni-N-C single-atom catalysts are investigated from 303 to 343 K. Increasing the reaction temperature improves and decreases CO Faradaic efficiency over Fe-N-C and Ni-N-C catalysts at high overpotentials, respectively. CO current density over Fe-N-C catalyst increases with temperature, then gets into a plateau at 323 K, finally reaches the maximum value of 185.8 mA cm at 343 K. While CO current density over Ni-N-C catalyst achieves the maximum value of 252.5 mA cm at 323 K, and then drops significantly to 202.9 mA cm at 343 K. Temperature programmed desorption results and density functional theory calculations reveal that the difference of temperature-dependent variation on CO Faradaic efficiency and current density between Fe-N-C and Ni-N-C catalysts results from the varied adsorption strength of key reaction intermediates during CO RR.
由于电化学CO还原反应(CO RR)和竞争性析氢反应(HER)具有不同的热力学性质,反应温度是调节CO RR选择性和活性的重要参数。在这项工作中,研究了303至343 K温度范围内Fe-N-C和Ni-N-C单原子催化剂上与温度相关的CO RR。在高过电位下,提高反应温度分别提高和降低了Fe-N-C和Ni-N-C催化剂上的CO法拉第效率。Fe-N-C催化剂上的CO电流密度随温度升高,在323 K时进入平台期,最终在343 K时达到185.8 mA cm的最大值。而Ni-N-C催化剂上的CO电流密度在323 K时达到252.5 mA cm的最大值,然后在343 K时显著下降至202.9 mA cm。程序升温脱附结果和密度泛函理论计算表明,Fe-N-C和Ni-N-C催化剂上CO法拉第效率和电流密度随温度变化的差异源于CO RR过程中关键反应中间体吸附强度的不同。