Suppr超能文献

用于高效二氧化碳还原和水电解的电化学电池设计:现状与展望

Electrochemical Cell Designs for Efficient Carbon Dioxide Reduction and Water Electrolysis: Status and Perspectives.

作者信息

Chen Zhangsen, Zhang Lei, Sun Shuhui, Zhang Gaixia

机构信息

Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada.

Clean Energy Innovation (CEI) Research Center, National Research Council of Canada (NRC), Vancouver, BC, V6T 1W5, Canada.

出版信息

Adv Mater. 2025 Aug;37(33):e2505287. doi: 10.1002/adma.202505287. Epub 2025 May 30.

Abstract

Integrating renewable electricity and concentrated CO from direct air capture, electrochemical CO reduction reactions (eCORR) offer a promising pathway for converting CO into fuel chemicals, enabling the closure of the carbon loop in a sustainable manner. The clean H produced via the hydrogen evolution reaction (HER) during water electrolysis can replace traditional fossil fuels without additional CO emissions. Achieving large-scale and high-efficiency eCORR and HER requires the development of rational electrolyzer designs, which are crucial for industrial implementation. This review examines recent innovations in system designs for eCORR, HER, and the latest advances in in situ cell designs for operando characterization during electrochemical reactions. It focuses on cell improvements in flow patterns, membrane electrode assemblies, and electrolyte engineering to maximize catalytic activities at the industrial level. Besides, the review discusses optimizing counter-anodic reactions to improve the energy efficiency of eCORR and water electrolysis, offering insights into the design of catalytic systems with efficient energy utilization. Furthermore, it explores the integration of eCORR and HER with other electrochemical systems (e.g., fuel cells), highlighting their potential role in the decarbonization of future industrial processes. Finally, the summary, challenge, and outlook on the industrial-scale eCORR and water electrolysis system designs are concluded.

摘要

将可再生电力与直接空气捕获产生的高浓度一氧化碳相结合,电化学一氧化碳还原反应(eCORR)为将一氧化碳转化为燃料化学品提供了一条有前景的途径,能够以可持续的方式实现碳循环的闭合。通过水电解过程中的析氢反应(HER)产生的清洁氢气可以替代传统化石燃料,且不会产生额外的一氧化碳排放。要实现大规模、高效率的eCORR和HER,需要开发合理的电解槽设计,这对于工业应用至关重要。本文综述了eCORR、HER系统设计的最新创新以及用于电化学反应过程中操作表征的原位电池设计的最新进展。它着重于在流动模式、膜电极组件和电解质工程方面对电池进行改进,以在工业层面上最大化催化活性。此外,本文还讨论了优化对阳极反应以提高eCORR和水电解的能源效率,为设计具有高效能源利用的催化系统提供见解。此外,还探讨了eCORR和HER与其他电化学系统(如燃料电池)的集成,突出了它们在未来工业过程脱碳中的潜在作用。最后,对工业规模的eCORR和水电解系统设计进行了总结、挑战分析和展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/871b/12369698/a805824a1d92/ADMA-37-2505287-g006.jpg

相似文献

1
Electrochemical Cell Designs for Efficient Carbon Dioxide Reduction and Water Electrolysis: Status and Perspectives.
Adv Mater. 2025 Aug;37(33):e2505287. doi: 10.1002/adma.202505287. Epub 2025 May 30.
2
From Molecules to Modules: Pathways toward Scalable Electrochemical CO Reduction.
Acc Chem Res. 2025 Aug 21. doi: 10.1021/acs.accounts.5c00416.
3
Fundamental Insights for Practical Electrocatalytic CO Reduction.
Acc Chem Res. 2025 Aug 5;58(15):2365-2378. doi: 10.1021/acs.accounts.5c00154. Epub 2025 Jul 7.
4
Metal-nitrogen-carbon catalysts for electrochemical CO reduction: from design to industrial applications.
Chem Commun (Camb). 2025 Jul 10;61(57):10484-10504. doi: 10.1039/d5cc02297e.
6
Operando Benchtop NMR Quantifies Carbonation, Water Crossover, and Liquid Products for High-Current Electrochemical CO Reduction.
ACS Catal. 2025 Jul 7;15(14):12300-12307. doi: 10.1021/acscatal.5c00355. eCollection 2025 Jul 18.
9
Status and Outlook of Solid Oxide Cells for Hydrocarbon Fuel Conversion.
ChemSusChem. 2025 Jul 24:e2501131. doi: 10.1002/cssc.202501131.
10
Selectively Electrochemical Reduction of CO Based on Metal Clusters Catalysts.
ChemSusChem. 2025 Jul 27;18(15):e202500155. doi: 10.1002/cssc.202500155. Epub 2025 Jun 23.

本文引用的文献

1
2
Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost.
Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202417987. doi: 10.1002/anie.202417987. Epub 2024 Nov 16.
3
Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells.
Small Methods. 2024 Dec;8(12):e2400574. doi: 10.1002/smtd.202400574. Epub 2024 Sep 17.
5
Electrified -Freezing of Electrocatalytic CO Reduction Cells for Cryogenic Electron Microscopy.
Nano Lett. 2024 Aug 28;24(34):10409-10417. doi: 10.1021/acs.nanolett.3c03000. Epub 2024 Aug 19.
6
A high-performance watermelon skin ion-solvating membrane for electrochemical CO reduction.
Nat Commun. 2024 Aug 7;15(1):6722. doi: 10.1038/s41467-024-51139-6.
7
Electron-Efficient Co-Electrosynthesis of Formates from CO and Methanol Feedstocks.
Angew Chem Int Ed Engl. 2024 Nov 4;63(45):e202412410. doi: 10.1002/anie.202412410. Epub 2024 Sep 17.
8
Capturing carbon dioxide from air with charged-sorbents.
Nature. 2024 Jun;630(8017):654-659. doi: 10.1038/s41586-024-07449-2. Epub 2024 Jun 5.
9
Atomically Dispersed Metal Catalysts for the Conversion of CO into High-Value C Chemicals.
Adv Mater. 2024 Sep;36(37):e2310912. doi: 10.1002/adma.202310912. Epub 2024 Jun 4.
10
Addressing the Carbonate Issue: Electrocatalysts for Acidic CO Reduction Reaction.
Adv Mater. 2025 Jan;37(2):e2312894. doi: 10.1002/adma.202312894. Epub 2024 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验