Suppr超能文献

相似文献

1
Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis.
Angew Chem Int Ed Engl. 2021 Dec 20;60(52):26960-26970. doi: 10.1002/anie.202109384. Epub 2021 Nov 10.
4
5
Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides.
Nat Commun. 2021 Mar 4;12(1):1431. doi: 10.1038/s41467-021-21432-9.
8
A radical intermediate in the conversion of pentachlorophenol to tetrachlorohydroquinone by Sphingobium chlorophenolicum.
Biochemistry. 2014 Oct 21;53(41):6539-49. doi: 10.1021/bi5010427. Epub 2014 Oct 6.
10
Probing electron transfer in flavocytochrome P-450 BM3 and its component domains.
Eur J Biochem. 1996 Jul 15;239(2):403-9. doi: 10.1111/j.1432-1033.1996.0403u.x.

引用本文的文献

1
Genome-mining-guided discovery of coumarubrin: A novel aminocoumarin-substituted rubromycin antibiotic.
J Ind Microbiol Biotechnol. 2024 Dec 31;52. doi: 10.1093/jimb/kuaf018.
3
Isolation, biosynthesis, and biological activity of rubromycins derived from actinomycetes.
Eng Microbiol. 2022 Jul 31;2(3):100039. doi: 10.1016/j.engmic.2022.100039. eCollection 2022 Sep.
4
Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products.
Chem Sci. 2024 Apr 24;15(20):7749-7756. doi: 10.1039/d4sc01715c. eCollection 2024 May 22.
6
7
Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products.
Biochemistry. 2022 Jan 18;61(2):47-56. doi: 10.1021/acs.biochem.1c00763. Epub 2021 Dec 28.

本文引用的文献

1
A Flavoprotein Dioxygenase Steers Bacterial Tropone Biosynthesis via Coenzyme A-Ester Oxygenolysis and Ring Epoxidation.
J Am Chem Soc. 2021 Jul 14;143(27):10413-10421. doi: 10.1021/jacs.1c04996. Epub 2021 Jul 1.
2
Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases.
Arch Biochem Biophys. 2021 May 15;702:108820. doi: 10.1016/j.abb.2021.108820. Epub 2021 Mar 5.
3
Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides.
Nat Commun. 2021 Mar 4;12(1):1431. doi: 10.1038/s41467-021-21432-9.
4
Flavoprotein monooxygenases: Versatile biocatalysts.
Biotechnol Adv. 2021 Nov 1;51:107712. doi: 10.1016/j.biotechadv.2021.107712. Epub 2021 Feb 13.
5
The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases.
Arch Biochem Biophys. 2021 Feb 15;698:108732. doi: 10.1016/j.abb.2020.108732. Epub 2020 Dec 24.
6
N5 Is the New C4a: Biochemical Functionalization of Reduced Flavins at the N5 Position.
Front Mol Biosci. 2020 Oct 30;7:598912. doi: 10.3389/fmolb.2020.598912. eCollection 2020.
7
Oxidative Carbon Backbone Rearrangement in Rishirilide Biosynthesis.
J Am Chem Soc. 2020 Apr 1;142(13):5913-5917. doi: 10.1021/jacs.9b12736. Epub 2020 Mar 19.
9
Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases.
Nat Chem Biol. 2020 May;16(5):556-563. doi: 10.1038/s41589-020-0476-2. Epub 2020 Feb 17.
10
Structural methods for probing the interaction of flavoenzymes with dioxygen and its surrogates.
Methods Enzymol. 2019;620:349-363. doi: 10.1016/bs.mie.2019.03.016. Epub 2019 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验