Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.
Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada.
J Biol Chem. 2020 Apr 3;295(14):4709-4722. doi: 10.1074/jbc.RA119.011212. Epub 2020 Feb 28.
Group A flavin-dependent monooxygenases catalyze the cleavage of the oxygen-oxygen bond of dioxygen, followed by the incorporation of one oxygen atom into the substrate molecule with the aid of NADPH and FAD. These flavoenzymes play an important role in many biological processes, and their most distinct structural feature is the choreographed motions of flavin, which typically adopts two distinct conformations (OUT and IN) to fulfill its function. Notably, these enzymes seem to have evolved a delicate control system to avoid the futile cycle of NADPH oxidation and FAD reduction in the absence of substrate, but the molecular basis of this system remains elusive. Using protein crystallography, size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and small-angle X-ray scattering (SEC-SAXS) and activity assay, we report here a structural and biochemical characterization of PieE, a member of the Group A flavin-dependent monooxygenases involved in the biosynthesis of the antibiotic piericidin A1. This analysis revealed that PieE forms a unique hexamer. Moreover, we found, to the best of our knowledge for the first time, that in addition to the classical OUT and IN conformations, FAD possesses a "sliding" conformation that exists in between the OUT and IN conformations. This observation sheds light on the underlying mechanism of how the signal of substrate binding is transmitted to the FAD-binding site to efficiently initiate NADPH binding and FAD reduction. Our findings bridge a gap currently missing in the orchestrated order of chemical events catalyzed by this important class of enzymes.
A 组黄素依赖单加氧酶催化氧气分子中氧-氧键的断裂,然后在 NADPH 和 FAD 的辅助下将一个氧原子掺入到底物分子中。这些黄素酶在许多生物过程中起着重要作用,其最显著的结构特征是黄素的协调运动,黄素通常采用两种不同的构象(OUT 和 IN)来完成其功能。值得注意的是,这些酶似乎已经进化出一种精细的控制系统,以避免在没有底物的情况下 NADPH 氧化和 FAD 还原的无效循环,但该系统的分子基础仍然难以捉摸。我们使用蛋白质晶体学、凝胶渗透色谱-多角度光散射(SEC-MALS)和小角 X 射线散射(SEC-SAXS)以及活性测定法,对参与抗生素皮啶 A1 生物合成的 A 组黄素依赖单加氧酶 PieE 进行了结构和生化表征。该分析表明 PieE 形成独特的六聚体。此外,我们首次发现,除了经典的 OUT 和 IN 构象外,FAD 还具有一种“滑动”构象,存在于 OUT 和 IN 构象之间。这一观察结果揭示了底物结合信号如何传递到 FAD 结合位点以有效启动 NADPH 结合和 FAD 还原的潜在机制。我们的发现填补了目前催化这一类重要酶的化学事件协调顺序中缺失的一个环节。