Suppr超能文献

通过 ,从蛋白质中提取动态相关性并识别变构通讯的关键残基。

Extracting Dynamical Correlations and Identifying Key Residues for Allosteric Communication in Proteins by .

机构信息

Unit of Architecture and Dynamics of Biological Macromolecules, Pasteur Institute, UMR 3528 CNRS, 25 Rue du Dr. Roux, 75015 Paris, France.

Computational Biology Department, Bioinformatics and Biostatistics Hub, 28 Rue du Dr. Roux, 75015 Paris, France.

出版信息

J Chem Inf Model. 2021 Oct 25;61(10):4832-4838. doi: 10.1021/acs.jcim.1c00742. Epub 2021 Oct 15.

Abstract

Extracting dynamical pairwise correlations and identifying key residues from large molecular dynamics trajectories or normal-mode analysis of coarse-grained models are important for explaining various processes like ligand binding, mutational effects, and long-distance interactions. Efficient and flexible tools to perform this task can provide new insights about residues involved in allosteric regulation and protein function. In addition, combining and comparing dynamical coupling information with sequence coevolution data can help to understand better protein function. To this aim, we developed a Python package called to calculate, visualize, and analyze pairwise correlations. In this way, the package aids to identify key residues and interactions in proteins. The source code of is available under LGPL version 3 at https://github.com/tekpinar/correlationplus. The current version of the package (0.2.0) can be installed with common installation methods like conda or pip in addition to source code installation. Moreover, docker images are also available for usage of the code without installation.

摘要

从大规模分子动力学轨迹或粗粒模型的正态模态分析中提取动力学成对相关并识别关键残基,对于解释配体结合、突变效应和长程相互作用等各种过程非常重要。执行此任务的高效灵活工具可以提供有关变构调节和蛋白质功能中涉及的残基的新见解。此外,将动态耦合信息与序列共进化数据相结合和比较,有助于更好地理解蛋白质功能。为此,我们开发了一个名为的 Python 包,用于计算、可视化和分析成对相关性。通过这种方式,该软件包有助于识别蛋白质中的关键残基和相互作用。的源代码可在 LGPL 版本 3 下在 https://github.com/tekpinar/correlationplus 获得。该软件包的当前版本(0.2.0)除了源代码安装之外,还可以通过 conda 或 pip 等常见安装方法进行安装。此外,还提供了 docker 镜像,可在无需安装的情况下使用代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验