Jiao Zhi-Qiang, Longhi Stefano, Wang Xiao-Wei, Gao Jun, Zhou Wen-Hao, Wang Yao, Fu Yu-Xuan, Wang Li, Ren Ruo-Jing, Qiao Lu-Feng, Jin Xian-Min
Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China.
CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev Lett. 2021 Oct 1;127(14):147401. doi: 10.1103/PhysRevLett.127.147401.
Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry by engineering one-dimensional zigzag photonic lattices, where the long-range hopping breaks chiral symmetry but ensures the existence of inversion symmetry. By the averaged mean displacement method, we detect topological invariants directly in the bulk through the continuous-time quantum walk of photons. Our results demonstrate that inversion symmetry protects the quantized Zak phase but edge states can disappear in the topological nontrivial phase, thus breaking the conventional bulk-boundary correspondence. Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.
对称性在识别物质的拓扑相以及通过体边对应在受保护的边缘态和拓扑体不变量之间建立直接联系方面起着重要作用。一维晶格被认为受手性对称性保护,表现出量子化的Zak相和受保护的边缘态,但并非所有情况都是如此。在这里,我们通过设计一维锯齿形光子晶格,实验实现了具有破缺手性对称性的扩展Su-Schrieffer-Heeger模型,其中长程跳跃打破了手性对称性,但确保了空间反演对称性的存在。通过平均平均位移方法,我们通过光子的连续时间量子行走直接在体中检测拓扑不变量。我们的结果表明,空间反演对称性保护量子化的Zak相,但边缘态可以在拓扑非平凡相中消失,从而打破了传统的体边对应。我们的光子晶格为研究拓扑相、对称性和体边对应之间的相互作用提供了一个有用的平台。