Suppr超能文献

高阶对称保护拓扑相中的 Thouless 泵浦与体-边界对应

Thouless Pumps and Bulk-Boundary Correspondence in Higher-Order Symmetry-Protected Topological Phases.

作者信息

Wienand Julian F, Horn Friederike, Aidelsburger Monika, Bibo Julian, Grusdt Fabian

机构信息

Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 Munich, Germany.

Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80333 Munich, Germany.

出版信息

Phys Rev Lett. 2022 Jun 17;128(24):246602. doi: 10.1103/PhysRevLett.128.246602.

Abstract

The bulk-boundary correspondence relates quantized edge states to bulk topological invariants in topological phases of matter. In one-dimensional symmetry-protected topological systems, quantized topological Thouless pumps directly reveal this principle and provide a sound mathematical foundation. Symmetry-protected higher-order topological phases of matter (HOSPTs) also feature a bulk-boundary correspondence, but its connection to quantized charge transport remains elusive. Here, we show that quantized Thouless pumps connecting C_{4}-symmetric HOSPTs can be described by a tuple of four Chern numbers that measure quantized bulk charge transport in a direction-dependent fashion. Moreover, this tuple of Chern numbers allows to predict the sign and value of fractional corner charges in the HOSPTs. We show that the topologically nontrivial phase can be characterized by both quadrupole and dipole configurations, shedding new light on current debates about the multipole nature of the HOSPT bulk. By employing corner-periodic boundary conditions, we generalize Restas's theory to HOSPTs. Our approach provides a simple framework for understanding topological invariants of general HOSPTs and paves the way for an in-depth description of future dynamical experiments.

摘要

体-边界对应关系将量子化的边缘态与物质拓扑相中的体拓扑不变量联系起来。在一维对称保护拓扑系统中,量子化的拓扑 Thouless 泵直接揭示了这一原理,并提供了坚实的数学基础。对称保护的高阶拓扑物质相(HOSPTs)也具有体-边界对应关系,但其与量子化电荷输运的联系仍然难以捉摸。在这里,我们表明连接 C₄ 对称 HOSPTs 的量子化 Thouless 泵可以由四个陈数的元组来描述,这些陈数以方向依赖的方式测量量子化的体电荷输运。此外,这个陈数元组可以预测 HOSPTs 中分数角电荷的符号和值。我们表明,拓扑非平凡相可以由四极和偶极构型来表征,这为当前关于 HOSPT 体的多极性质的争论提供了新的线索。通过采用角周期边界条件,我们将 Restas 的理论推广到 HOSPTs。我们的方法为理解一般 HOSPTs 的拓扑不变量提供了一个简单的框架,并为未来动力学实验的深入描述铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验