Primc Darinka, Indrizzi Luca, Tervoort Elena, Xie Fang, Niederberger Markus
Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
Nanoscale. 2021 Oct 28;13(41):17521-17529. doi: 10.1039/d1nr05767g.
Mesocrystals are superstructures of crystallographically aligned nanoparticles and are a rapidly emerging class of crystalline materials displaying sophisticated morphologies and properties, beyond those originating from size and shape of nanoparticles alone. This study reports the first synthesis of CuN mesocrystals employing structure-directing agents with a subtle tuning of the reaction parameters. Detailed structural characterizations carried out with a combination of transmission electron microscopy techniques (HRTEM, HAADF-STEM-EXDS) reveal that CuN mesocrystals form by non-classical crystallization, and variations in their sizes and morphologies are traced back to distinct attachment scenarios of corresponding mesocrystal subunits. In the presence of oleylamine, the mesocrystal subunits in the early reaction stages prealign in a crystallographic fashion and afterwards grow into the final mesocrystals, while in the presence of hexadecylamine the subunits come into contact through misaligned attachment, and subsequently, to some degree, realign in crystallographic register. Upon prolonged heating both types of mesocrystals undergo chemical conversion processes resulting in structural and morphological changes. A two-step mechanism of chemical conversion is proposed, involving CuN decomposition and anion exchange driven by the nanoscale Kirkendall effect, resulting first in multicomponent/heterostructured CuN-CuO mesocrystals, which subsequently convert into CuO nanocages. It is anticipated that combining nanostructured CuN and CuO in a mesocrystalline and hollow morphology will provide a platform to expand their application potential.
介晶是晶体学上排列的纳米颗粒的超结构,是一类迅速兴起的晶体材料,具有复杂的形态和性质,超越了仅由纳米颗粒的尺寸和形状所产生的特性。本研究报道了首次使用结构导向剂并对反应参数进行微调来合成CuN介晶。结合透射电子显微镜技术(高分辨透射电子显微镜、高角度环形暗场扫描透射电子显微镜-能量过滤能谱)进行的详细结构表征表明,CuN介晶通过非经典结晶形成,其尺寸和形态的变化可追溯到相应介晶亚基的不同附着情况。在油胺存在下,反应早期阶段的介晶亚基以晶体学方式预先排列,随后生长成最终的介晶,而在十六胺存在下,亚基通过错位附着接触,随后在一定程度上以晶体学取向重新排列。长时间加热后,两种类型的介晶都会经历化学转化过程,导致结构和形态发生变化。提出了一种两步化学转化机制,涉及由纳米级柯肯达尔效应驱动的CuN分解和阴离子交换,首先产生多组分/异质结构的CuN-CuO介晶,随后转化为CuO纳米笼。预计将纳米结构的CuN和CuO以介晶和中空形态结合起来将提供一个扩展其应用潜力的平台。