Suppr超能文献

铜氮纳米材料的合成、光学性质及光催化活性研究

Surveying the Synthesis, Optical Properties and Photocatalytic Activity of CuN Nanomaterials.

作者信息

Paredes Patricio, Rauwel Erwan, Rauwel Protima

机构信息

Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51014 Tartu, Estonia.

出版信息

Nanomaterials (Basel). 2022 Jun 28;12(13):2218. doi: 10.3390/nano12132218.

Abstract

This review addresses the most recent advances in the synthesis approaches, fundamental properties and photocatalytic activity of CuN nanostructures. Herein, the effect of synthesis conditions, such as solvent, temperature, time and precursor on the precipitation of CuN and the formation of secondary phases of Cu and CuO are surveyed, with emphasis on shape and size control. Furthermore, CuN nanostructures possess excellent optical properties, including a narrow bandgap in the range of 0.2 eV-2 eV for visible light absorption. In that regard, understanding the effect of the electronic structure on the bandgap and on the optical properties of CuN is therefore of interest. In fact, the density of states in the d-band of Cu has an influence on the band gap of CuN. Moreover, the potential of CuN nanomaterials for photocatalytic dye-degradation originates from the presence of active sites, i.e., Cu and N vacancies on the surface of the nanoparticles. Plasmonic nanoparticles tend to enhance the efficiency of photocatalytic dye degradation of CuN. Nevertheless, combining them with other potent photocatalysts, such as TiO and MoS augments the efficiency to 99%. Finally, the review concludes with perspectives and future research opportunities for CuN-based nanostructures.

摘要

本综述阐述了CuN纳米结构在合成方法、基本性质和光催化活性方面的最新进展。本文考察了合成条件(如溶剂、温度、时间和前驱体)对CuN沉淀以及Cu和CuO次生相形成的影响,重点是形状和尺寸控制。此外,CuN纳米结构具有优异的光学性质,包括在0.2 eV - 2 eV范围内的窄带隙,用于可见光吸收。在这方面,了解电子结构对CuN带隙和光学性质的影响因此备受关注。事实上,Cu的d带中的态密度对CuN的带隙有影响。此外,CuN纳米材料用于光催化染料降解的潜力源于活性位点的存在,即纳米颗粒表面的Cu和N空位。等离子体纳米颗粒倾向于提高CuN光催化染料降解的效率。然而,将它们与其他高效光催化剂(如TiO和MoS)结合可将效率提高到99%。最后,综述以基于CuN的纳米结构的前景和未来研究机会作为结尾。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef47/9268351/3716e89ceae3/nanomaterials-12-02218-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验