Suppr超能文献

脑信号运动的复发特征值

Recurrence eigenvalues of movements from brain signals.

作者信息

Pham Tuan D

机构信息

Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia.

出版信息

Brain Inform. 2021 Oct 15;8(1):22. doi: 10.1186/s40708-021-00143-3.

Abstract

The ability to characterize muscle activities or skilled movements controlled by signals from neurons in the motor cortex of the brain has many useful implications, ranging from biomedical perspectives to brain-computer interfaces. This paper presents the method of recurrence eigenvalues for differentiating moving patterns in non-mammalian and human models. The non-mammalian models of Caenorhabditis elegans have been studied for gaining insights into behavioral genetics and discovery of human disease genes. Systematic probing of the movement of these worms is known to be useful for these purposes. Study of dynamics of normal and mutant worms is important in behavioral genetic and neuroscience. However, methods for quantifying complexity of worm movement using time series are still not well explored. Neurodegenerative diseases adversely affect gait and mobility. There is a need to accurately quantify gait dynamics of these diseases and differentiate them from the healthy control to better understand their pathophysiology that may lead to more effective therapeutic interventions. This paper attempts to explore the potential application of the method for determining the largest eigenvalues of convolutional fuzzy recurrence plots of time series for measuring the complexity of moving patterns of Caenorhabditis elegans and neurodegenerative disease subjects. Results obtained from analyses demonstrate that the largest recurrence eigenvalues can differentiate phenotypes of behavioral dynamics between wild type and mutant strains of Caenorhabditis elegans; and walking patterns among healthy control subjects and patients with Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis.

摘要

通过大脑运动皮层中神经元发出的信号来表征肌肉活动或熟练运动的能力具有许多有益的意义,从生物医学角度到脑机接口均有涉及。本文提出了一种用于区分非哺乳动物和人类模型中运动模式的递归特征值方法。秀丽隐杆线虫的非哺乳动物模型已被用于深入了解行为遗传学和发现人类疾病基因。已知对这些线虫的运动进行系统探测对实现这些目标很有用。研究正常和突变线虫的动力学在行为遗传学和神经科学中很重要。然而,利用时间序列量化线虫运动复杂性的方法仍未得到充分探索。神经退行性疾病会对步态和行动能力产生不利影响。需要准确量化这些疾病的步态动力学,并将其与健康对照区分开来,以便更好地理解其病理生理学,从而可能带来更有效的治疗干预措施。本文试图探索一种方法的潜在应用,该方法通过确定时间序列的卷积模糊递归图的最大特征值来测量秀丽隐杆线虫和神经退行性疾病患者运动模式的复杂性。分析结果表明,最大递归特征值可以区分秀丽隐杆线虫野生型和突变型菌株之间行为动力学的表型;以及健康对照受试者与帕金森病、亨廷顿舞蹈病或肌萎缩侧索硬化症患者之间的行走模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验