Suppr超能文献

基于经验模态分解的神经退行性疾病步态节律波动分析

Gait Rhythm Fluctuation Analysis for Neurodegenerative Diseases by Empirical Mode Decomposition.

作者信息

Ren Peng, Tang Shanjiang, Fang Fang, Luo Lizhu, Xu Lei, Bringas-Vega Maria L, Yao Dezhong, Kendrick Keith M, Valdes-Sosa Pedro A

出版信息

IEEE Trans Biomed Eng. 2017 Jan;64(1):52-60. doi: 10.1109/TBME.2016.2536438. Epub 2016 Mar 1.

Abstract

Previous studies have indicated that gait rhythm fluctuations are useful for characterizing certain pathologies of neurodegenerative diseases such as Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, no previous study has investigated the properties of frequency range distributions of gait rhythms. Therefore, in our study, empirical mode decomposition was implemented for decomposing the time series of gait rhythms into intrinsic mode functions from the high-frequency component to the low-frequency component sequentially. Then, Kendall's coefficient of concordance and the ratio for energy change for different IMFs were calculated, which were denoted as W and R , respectively. Results revealed that the frequency distributions of gait rhythms in patients with neurodegenerative diseases are less homogeneous than healthy subjects, and the gait rhythms of the patients contain much more high-frequency components. In addition, parameters of W and R can significantly differentiate among the four groups of subjects (HD, ALS, PD, and healthy subjects) (with the minimum p-value of 0.0000493). Finally, five representative classifiers were utilized in order to evaluate the possible capabilities of W and R to distinguish the patients with neurodegenerative diseases from the healthy subjects. This achieved maximum area under the curve values of 0.949, 0.900, and 0.934 for PD, HD, and ALS detection, respectively. In sum, our study suggests that gait rhythm features extracted in the frequency domain should be given consideration seriously in the future neurodegenerative disease characterization and intervention.

摘要

先前的研究表明,步态节奏波动有助于表征某些神经退行性疾病的特定病理特征,如亨廷顿舞蹈症(HD)、肌萎缩侧索硬化症(ALS)和帕金森病(PD)。然而,此前尚无研究调查步态节奏的频率范围分布特性。因此,在我们的研究中,采用经验模态分解将步态节奏的时间序列依次从高频分量到低频分量分解为固有模态函数。然后,计算了肯德尔和谐系数以及不同固有模态函数的能量变化率,分别记为W和R。结果显示,神经退行性疾病患者的步态节奏频率分布比健康受试者的更不均匀,且患者的步态节奏包含更多高频分量。此外,W和R参数能够显著区分四组受试者(HD、ALS、PD和健康受试者)(最小p值为0.0000493)。最后,使用了五种代表性分类器来评估W和R区分神经退行性疾病患者与健康受试者的潜在能力。对于PD、HD和ALS检测,曲线下面积值分别达到了0.949、0.900和0.934的最大值。总之,我们的研究表明,在未来神经退行性疾病的特征描述和干预中,应认真考虑在频域中提取的步态节奏特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验