Anso Itxaso, Basso Luis G M, Wang Lei, Marina Alberto, Páez-Pérez Edgar D, Jäger Christian, Gavotto Floriane, Tersa Montse, Perrone Sebastián, Contreras F-Xabier, Prandi Jacques, Gilleron Martine, Linster Carole L, Corzana Francisco, Lowary Todd L, Trastoy Beatriz, Guerin Marcelo E
Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Bizkaia, Spain.
Sci Adv. 2021 Oct 15;7(42):eabj4565. doi: 10.1126/sciadv.abj4565.
Glycolipids are prominent components of bacterial membranes that play critical roles not only in maintaining the structural integrity of the cell but also in modulating host-pathogen interactions. PatA is an essential acyltransferase involved in the biosynthesis of phosphatidyl--inositol mannosides (PIMs), key structural elements and virulence factors of . We demonstrate by electron spin resonance spectroscopy and surface plasmon resonance that PatA is an integral membrane acyltransferase tightly anchored to anionic lipid bilayers, using a two-helix structural motif and electrostatic interactions. PatA dictates the acyl chain composition of the glycolipid by using an acyl chain selectivity “ruler.” We established this by a combination of structural biology, enzymatic activity, and binding measurements on chemically synthesized nonhydrolyzable acyl–coenzyme A (CoA) derivatives. We propose an interfacial catalytic mechanism that allows PatA to acylate hydrophobic PIMs anchored in the inner membrane of mycobacteria, through the use of water-soluble acyl-CoA donors.
糖脂是细菌细胞膜的重要组成部分,不仅在维持细胞的结构完整性方面发挥关键作用,而且在调节宿主 - 病原体相互作用中也起着重要作用。PatA是一种参与磷脂酰肌醇甘露糖苷(PIMs)生物合成的必需酰基转移酶,PIMs是结核分枝杆菌的关键结构元件和毒力因子。我们通过电子自旋共振光谱和表面等离子体共振证明,PatA是一种通过双螺旋结构基序和静电相互作用紧密锚定在阴离子脂质双层上的整合膜酰基转移酶。PatA通过使用酰基链选择性“尺子”来决定糖脂的酰基链组成。我们通过对化学合成的不可水解酰基辅酶A(CoA)衍生物进行结构生物学、酶活性和结合测量相结合的方法确定了这一点。我们提出了一种界面催化机制,该机制允许PatA通过使用水溶性酰基 - CoA供体对锚定在分枝杆菌内膜中的疏水性PIMs进行酰化。