文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习自然语言处理实现青霉素药物不良反应分类和风险分层的自动化。

Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing.

机构信息

Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.

Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.

出版信息

Int J Med Inform. 2021 Dec;156:104611. doi: 10.1016/j.ijmedinf.2021.104611. Epub 2021 Oct 5.


DOI:10.1016/j.ijmedinf.2021.104611
PMID:34653809
Abstract

BACKGROUND: The penicillin adverse drug reaction (ADR) label is common in electronic health records (EHRs). However, there is significant misclassification between allergy and intolerance within the EHR and most patients can be delabelled after an immunologic assessment. Machine learning natural language processing may be able to assist with the categorisation and risk stratification of penicillin ADRs. OBJECTIVE: The aim of this study was to use text entered into an EHR to derive and evaluate machine learning models to classify penicillin ADRs and assess the risk of true allergy. METHODS: Machine learning natural language processing was applied to free-text penicillin ADR data extracted from a public health system EHR. The model was developed by training on labelled dataset. ADR entries were split into training and testing datasets and used to develop and test a variety of machine learning models. These were compared to categorisation with a simple algorithm using keyword search. RESULTS: The best performing model for the classification of penicillin ADRs as being consistent with allergy or intolerance was the artificial neural network (AUC 0.994, sensitivity 0.99, specificity 0.96). The artificial neural network also achieved the highest AUC in the classification of high- or low-risk of true allergy (AUC 0.988, sensitivity 0.99, specificity 0.99). All ADR labels were able to be classified using these machine learning models, whereas a small proportion were unclassifiable using the simple algorithm as they contained no keywords. CONCLUSION: Machine learning natural language processing performed similarly to expert criteria in classifying and risk stratifying penicillin ADRs labels. These models outperformed simpler algorithms in their ability to interpret free-text data contained in the EHR. The automated evaluation of penicillin ADR labels may allow real-time risk stratification to facilitate delabelling and improve the specificity of prescribing alerts.

摘要

背景:青霉素药物不良反应 (ADR) 标签在电子健康记录 (EHR) 中很常见。然而,EHR 中过敏和不耐受之间存在显著的分类错误,大多数患者在免疫评估后可以去除标签。机器学习自然语言处理可能有助于青霉素 ADR 的分类和风险分层。

目的:本研究旨在使用输入到 EHR 中的文本,开发和评估机器学习模型,以分类青霉素 ADR,并评估真正过敏的风险。

方法:将机器学习自然语言处理应用于从公共卫生系统 EHR 中提取的免费文本青霉素 ADR 数据。该模型通过在标记数据集上进行训练来开发。ADR 条目被分为训练和测试数据集,并用于开发和测试各种机器学习模型。这些模型与使用关键字搜索的简单算法进行了分类比较。

结果:用于分类青霉素 ADR 与过敏或不耐受一致的最佳模型是人工神经网络 (AUC 0.994,灵敏度 0.99,特异性 0.96)。人工神经网络在分类真正过敏的高或低风险方面也获得了最高的 AUC (AUC 0.988,灵敏度 0.99,特异性 0.99)。所有 ADR 标签都可以使用这些机器学习模型进行分类,而使用简单算法时,由于它们不包含任何关键字,因此一小部分标签无法分类。

结论:机器学习自然语言处理在分类和风险分层青霉素 ADR 标签方面与专家标准表现相似。这些模型在解释 EHR 中包含的自由文本数据方面优于简单算法,具有更高的能力。青霉素 ADR 标签的自动评估可能允许实时风险分层,以促进去标签化并提高处方警报的特异性。

相似文献

[1]
Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing.

Int J Med Inform. 2021-12

[2]
Improving the performance of machine learning penicillin adverse drug reaction classification with synthetic data and transfer learning.

Intern Med J. 2024-7

[3]
Machine learning models automate classification of penicillin adverse drug reaction labels.

Intern Med J. 2023-8

[4]
Documentation of penicillin adverse drug reactions in electronic health records: inconsistent use of allergy and intolerance labels.

Intern Med J. 2017-11

[5]
Documentation of adverse drug reactions to opioids in an electronic health record.

Intern Med J. 2021-9

[6]
Multi-label classification of symptom terms from free-text bilingual adverse drug reaction reports using natural language processing.

PLoS One. 2022

[7]
Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training.

J Biomed Inform. 2019-7-16

[8]
Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.

Ups J Med Sci. 2020-11

[9]
Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.

J Stroke Cerebrovasc Dis. 2019-7

[10]
Identifying adverse drug reactions from free-text electronic hospital health record notes.

Br J Clin Pharmacol. 2022-3

引用本文的文献

[1]
Narrative review of recent developments and the future of penicillin allergy de-labelling by non-allergists.

NPJ Antimicrob Resist. 2024-7-10

[2]
Proactive Deep Learning-Facilitated Inpatient Penicillin Allergy Delabelling: An Implementation Study.

Int Arch Allergy Immunol. 2025

[3]
Automated extraction of standardized antibiotic resistance and prescription data from laboratory information systems and electronic health records: a narrative review.

Front Antibiot. 2024-3-8

[4]
An overview of immunotoxicity in drug discovery and development.

Toxicol Lett. 2025-1

[5]
Knowledge mapping and global trends of drug hypersensitivity from 2013 to 2023: A bibliometric analysis.

Immun Inflamm Dis. 2024-4

[6]
Antibiotic prophylaxis in immunosuppressed patients - Missed opportunities from trimethoprim-sulfamethoxazole allergy label.

World Allergy Organ J. 2024-1-3

[7]
Perceived usefulness of a mnemonic to improve nurses' evaluation of reported penicillin allergies.

Antimicrob Steward Healthc Epidemiol. 2023-7-11

[8]
Artificial Intelligence: Exploring the Future of Innovation in Allergy Immunology.

Curr Allergy Asthma Rep. 2023-6

[9]
Delabelling multiple antibiotic allergy: Practical issues.

Front Allergy. 2023-3-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索