Suppr超能文献

具有扩散界面的非线性瑞利 - 泰勒不稳定性引发的尖峰 - 气泡结构的二次不稳定性。

Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface.

作者信息

Han Lin, Yuan Jianjie, Dong Ming, Fan Zhengfeng

机构信息

Department of Mechanics, Tianjin University, Tianjin 300072, China.

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Phys Rev E. 2021 Sep;104(3-2):035108. doi: 10.1103/PhysRevE.104.035108.

Abstract

Laminar-turbulent transition in Rayleigh-Taylor (RT) flows usually starts with infinitesimal perturbations, which evolve into the spike-bubble structures in the nonlinear saturation phase. It is well accepted that the emergence and rapid amplification of the small-scale perturbations are attributed to the Kelvin-Helmholtz-type secondary instability due to the high velocity shears induced by the stretch of the spike-bubble structures, however, there has been no quantitative description on such a secondary instability in literature. Moreover, the instability mechanism may not be that simple, because the acceleration or the "rising bubble" effect could also play a role. Therefore, based on the two-dimensional diffuse-interface RT nonlinear flows, the present paper employs the Arnoldi iteration and generalized Rayleigh quotient iteration methods to provide a quantitative study on the secondary instability. Both sinuous and varicose instability modes with high growth rates are observed, all of which are confirmed to be attributed to both the Rayleigh-Taylor and Kelvin-Helmholtz regimes. The former regime dominates the early-time instability due to the "rising bubble" effect, whereas the latter regime becomes more significant as time advances. Being similar to the primary RT instability [Yu et al., Phys. Rev. E 97, 013102 (2018)2470-004510.1103/PhysRevE.97.013102, Dong et al., Phys. Rev. E 99, 013109 (2019)2470-004510.1103/PhysRevE.99.013109, Fan and Dong, Phys. Rev. E 101, 063103 (2020)2470-004510.1103/PhysRevE.101.063103], the diffuse interface also leads to a multiplicity of the secondary instability modes and higher-order modes are found to exhibit more local extremes than the lower-order ones. Direct numerical simulations are carried out, which confirm the linear growth of the secondary instability modes with infinitesimal amplitudes and show their evolution to the turbulent-mixing state.

摘要

瑞利 - 泰勒(RT)流中的层流 - 湍流转变通常始于微小扰动,这些扰动在非线性饱和阶段演变成尖峰 - 气泡结构。人们普遍认为,小尺度扰动的出现和快速放大归因于由尖峰 - 气泡结构拉伸引起的高速剪切导致的开尔文 - 亥姆霍兹型二次不稳定性,然而,文献中尚未对这种二次不稳定性进行定量描述。此外,不稳定性机制可能并非那么简单,因为加速度或“上升气泡”效应也可能起作用。因此,基于二维扩散界面RT非线性流,本文采用阿诺尔迪迭代和广义瑞利商迭代方法对二次不稳定性进行定量研究。观察到具有高增长率的正弦和静脉曲张不稳定性模式,所有这些都被证实归因于瑞利 - 泰勒和开尔文 - 亥姆霍兹机制。前一种机制由于“上升气泡”效应主导早期不稳定性,而随着时间的推移,后一种机制变得更加显著。与主要的RT不稳定性类似[于等人,《物理评论E》97,013102(2018)2470 - 004510.1103/PhysRevE.97.013102,董等人,《物理评论E》99,013109(2019)2470 - 004510.1103/PhysRevE.99.013109,范和董,《物理评论E》101,063103(2020)2470 - 004510.1103/PhysRevE.101.063103],扩散界面也导致二次不稳定性模式的多样性,并且发现高阶模式比低阶模式表现出更多的局部极值。进行了直接数值模拟,证实了二次不稳定性模式在微小振幅下的线性增长,并展示了它们向湍流混合状态的演化。

相似文献

3
Nonlinear, single-mode, two-dimensional Rayleigh-Taylor instability in ideal media.
Phys Rev E. 2024 Aug;110(2-2):025101. doi: 10.1103/PhysRevE.110.025101.
5
Compressibility effects in Rayleigh-Taylor instability-induced flows.瑞利-泰勒不稳定性诱导流中的可压缩性效应。
Philos Trans A Math Phys Eng Sci. 2010 Apr 13;368(1916):1681-704. doi: 10.1098/rsta.2009.0139.
9
Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings.瑞利 - 泰勒不稳定性的解决方案:气泡、尖峰及其标度关系。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):053009. doi: 10.1103/PhysRevE.89.053009. Epub 2014 May 12.
10
Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces.球形界面处加速和减速阶段的非线性瑞利-泰勒增长
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056308. doi: 10.1103/PhysRevE.72.056308. Epub 2005 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验