Petrone Luca, Cieśla Michał
via B. Cesana 6, 20132 Milano, Italy.
Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Łojasiewicza 11, Poland.
Phys Rev E. 2021 Sep;104(3-1):034903. doi: 10.1103/PhysRevE.104.034903.
We studied random sequential adsorption (RSA) of parallel rectangles with random aspect ratio but fixed area using a newly developed algorithm that allows to generate strictly saturated packing of this kind. We determined saturated packing fraction for several different distributions of a random variable used for selecting side length ratio of deposited rectangles. It was also shown that the anisotropy of deposited rectangles changes during packing generation. Additionally, we examined the kinetics of packing growth, which near saturation obeys the power law with the exponent 1/d≈1/3, typical for the RSA of unoriented anisotropic shapes on a two-dimensional surface. Kinetics in the low coverage limit is determined using the concept of the available surface function. The microstructural properties of obtained random packings are evaluated in terms of two-point density correlation function.
我们使用一种新开发的算法研究了具有随机纵横比但面积固定的平行矩形的随机顺序吸附(RSA),该算法能够生成此类严格饱和堆积。我们确定了用于选择沉积矩形边长比的随机变量的几种不同分布的饱和堆积分数。研究还表明,沉积矩形的各向异性在堆积生成过程中会发生变化。此外,我们研究了堆积生长的动力学,接近饱和时其遵循幂律,指数为1/d≈1/3,这对于二维表面上无定向各向异性形状的RSA来说是典型的。低覆盖率极限下的动力学是使用可用表面函数的概念来确定的。根据两点密度相关函数评估所得随机堆积的微观结构特性。