Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
Department of Radiation Oncology, Zhongshan Hospital, Shanghai, China.
Med Phys. 2021 Dec;48(12):7632-7640. doi: 10.1002/mp.15294. Epub 2021 Oct 29.
Single-isocenter linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) has become a promising treatment technique for the management of multiple brain metastases. Because of the high prescription dose and steep dose gradient, SRS plans are sensitive to geometric errors, resulting in loss of target coverage and suboptimal local tumor control. Current planning techniques rely on adding a uniform and isotropic setup margin to all gross tumor volumes (GTVs) to account for rotational uncertainties. However, this setup margin may be insufficient, since the magnitude of rotational uncertainties varies and is dependent upon the distance between a GTV and the isocenter. In this study, we designed a framework to determine the optimal isocenter of a single-isocenter SRS plan for multiple brain metastases using stochastic optimization to mitigate potential errors resulting from rotational uncertainties.
Planning target volumes (PTVs), defined as GTVs plus a 1-mm margin following common SRS planning convention, were assumed to be originally treated with a prescription dose and therefore covered by the prescription isodose cloud. The dose distribution, including the prescription isodose, was considered invariant assuming small rotations throughout the study. A stochastic optimization scheme was developed to determine the location of the optimal isocenter, so that the prescription dose coverage of rotated GTVs, equivalent to the intersecting volumes between the rotated GTVs and original PTVs, was maximized for any random small rotations about the isocenter. To evaluate the coverage of GTVs, the expected undergoing random rotations was approximated as the sample average undergoing a predetermined number of rotations. The expected of each individual GTV and total GTVs was then compared between the plans using the optimal isocenter and the center-of-mass (CoM), respectively.
Twenty-two patients previously treated for multiple brain metastases in a single institute were included in this retrospective study. Each patient was initially treated for more than three brain metastases (mean: 7.6; range: 3-15) with the average GTV volume of 0.89 cc (range: 0.03-11.78 cc). The optimal isocenter found for each patient was significantly different from the CoM, with the average Euclidean distance between the optimal isocenter and the CoM being 4.36 ± 2.59 cm. The dose coverage to GTVs was also significantly improved (paired t-test; p < 0.001) when the optimal isocenter was used, with the average of total GTVs increasing from 87.1% (standard deviation as std: 11.7%; range: 39.9-98.2%) to 94.2% (std: 5.4%; range: 77.7-99.4%). The volume of a GTV was positively correlated with the expected regardless of the isocenter used (Spearman coefficient: ; p < 0.001). The distance between a GTV and the isocenter was negatively correlated with the expected when the CoM was used ( ; p = 0.004), however no significant correlation was found when the optimal isocenter was used ( ; p = 0.137).
The proposed framework provides an effective approach to determine the optimal isocenter of single-isocenter LINAC-based SRS plans for multiple brain metastases. The implementation of the optimal isocenter results in SRS plans with consistently higher target coverage despite potential rotational uncertainties, and therefore significantly improves SRS plan robustness against random rotational uncertainties.
基于单中心点直线加速器(LINAC)的立体定向放射外科(SRS)已成为治疗多发脑转移瘤的一种有前途的治疗技术。由于处方剂量高且剂量梯度陡峭,SRS 计划对几何误差非常敏感,导致靶区覆盖不足和局部肿瘤控制效果不佳。目前的计划技术依赖于向所有大体肿瘤体积(GTV)添加均匀且各向同性的设置边界,以考虑旋转不确定性。然而,由于旋转不确定性的大小因 GTV 与中心点之间的距离而异,因此这种设置边界可能不够,可能会导致靶区覆盖不足。在这项研究中,我们设计了一个使用随机优化来减轻由于旋转不确定性而导致的潜在误差的框架,以确定用于多发脑转移瘤的单中心点 SRS 计划的最佳中心点。
计划靶区(PTV)被定义为 GTV 加上根据常见 SRS 计划惯例加 1mm 的边界,假设最初用处方剂量治疗,因此覆盖处方等剂量云。假设在整个研究过程中发生小旋转,剂量分布(包括处方等剂量)保持不变。开发了一种随机优化方案来确定最佳中心点的位置,使得旋转 GTV 的处方剂量覆盖,相当于旋转 GTV 与原始 PTV 之间的相交体积,最大化任意小旋转时的处方剂量覆盖。为了评估 GTV 的覆盖情况,将 的预期旋转 近似为在预定数量的旋转下的 样本平均值。然后,分别使用最佳中心点和质心(CoM)比较计划中每个单独 GTV 和总 GTV 的 。
本回顾性研究纳入了 22 名曾在一家机构接受多发脑转移瘤治疗的患者。每位患者最初接受了超过 3 个脑转移瘤(平均:7.6;范围:3-15)的治疗,GTV 平均体积为 0.89 cc(范围:0.03-11.78 cc)。为每位患者找到的最佳中心点与 CoM 显著不同,最佳中心点与 CoM 之间的平均欧几里得距离为 4.36±2.59 cm。当使用最佳中心点时,GTV 的剂量覆盖也得到了显著改善(配对 t 检验;p<0.001),总 GTV 的平均 从 87.1%(标准差 std:11.7%;范围:39.9-98.2%)增加到 94.2%(std:5.4%;范围:77.7-99.4%)。无论使用哪个中心点,GTV 的体积都与预期的 呈正相关(Spearman 系数:;p<0.001)。当使用 CoM 时,GTV 与中心点之间的距离与预期的 呈负相关(;p=0.004),而当使用最佳中心点时,没有发现显著相关性(;p=0.137)。
所提出的框架提供了一种有效方法,可确定用于多发脑转移瘤的单中心点 LINAC 基于 SRS 计划的最佳中心点。实施最佳中心点可使 SRS 计划始终具有更高的靶区覆盖,尽管存在潜在的旋转不确定性,但显着提高了 SRS 计划对随机旋转不确定性的稳健性。