Soñora Martín, Barrera Exequiel E, Pantano Sergio
Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay; Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina.
Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183804. doi: 10.1016/j.bbamem.2021.183804. Epub 2021 Oct 14.
Protein-lipid interactions modulate a plethora of physiopathologic processes and have been the subject of countless studies. However, these kinds of interactions in the context of viral envelopes have remained relatively unexplored, partially because the intrinsically small dimensions of the molecular systems escape to the current resolution of experimental techniques. However, coarse-grained and multiscale simulations may fill that niche, providing nearly atomistic resolution at an affordable computational price. Here we use multiscale simulations to characterize the lipid-protein interactions in the envelope of the Zika Virus, a prominent member of the Flavivirus genus. Comparisons between the viral envelope and simpler molecular systems indicate that the viral membrane is under extreme pressures and asymmetric forces. Furthermore, the dense net of protein-protein contacts established by the envelope proteins creates poorly solvated regions that destabilize the external leaflet leading to a decoupled dynamics between both membrane layers. These findings lead to the idea that the Flaviviral membrane may store a significant amount of elastic energy, playing an active role in the membrane fusion process.
蛋白质-脂质相互作用调节着众多生理病理过程,并且一直是无数研究的主题。然而,在病毒包膜背景下的这类相互作用仍相对未被探索,部分原因是分子系统固有的小尺寸超出了当前实验技术的分辨率。然而,粗粒度和多尺度模拟可能填补这一空白,以可承受的计算成本提供近乎原子水平的分辨率。在这里,我们使用多尺度模拟来表征寨卡病毒包膜中的脂质-蛋白质相互作用,寨卡病毒是黄病毒属的一个重要成员。病毒包膜与更简单分子系统之间的比较表明,病毒膜处于极端压力和不对称力之下。此外,包膜蛋白建立的密集蛋白质-蛋白质接触网络形成了溶剂化不良的区域,使外小叶不稳定,导致两个膜层之间的动力学解耦。这些发现引发了这样一种观点,即黄病毒膜可能储存大量弹性能量,在膜融合过程中发挥积极作用。