Suppr超能文献

曲妥珠单抗色谱分析与机器学习工具的联用:生物相似性和稳定性评估的一种互补方法。

Coupling of Trastuzumab chromatographic profiling with machine learning tools: A complementary approach for biosimilarity and stability assessment.

作者信息

Shatat Sara M, Al-Ghobashy Medhat A, Fathalla Faten A, Abbas Samah S, Eltanany Basma M

机构信息

National Organization for Research and Control of Biologicals, Egypt.

Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, Newgiza University, Egypt.

出版信息

J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Nov 1;1184:122976. doi: 10.1016/j.jchromb.2021.122976. Epub 2021 Oct 8.

Abstract

Biosimilar products present a growing opportunity to improve the global healthcare systems. The amount of accepted variability during the comparative assessments of biosimilar products introduces a significant challenge for both the biosimilar developers and the regulatory authorities. The aim of this study was to explore unsupervised machine learning tools as a mathematical aid for the interpretation and visualization of such comparability under control and stress conditions using data extracted from high throughput analytical techniques. For this purpose, a head-to-head analysis of the physicochemical characteristics of three Trastuzumab (TTZ) approved biosimilars and the originator product (Herceptin®) was performed. The studied quality attributes included the primary structure and identity by peptide mapping (PM) with reversed-phase chromatography-UV detection, size and charge profiles by stability-indicating size exclusion and cation exchange chromatography. Stress conditions involved pH and thermal stress. Principal component analysis (PCA) and two of the widely used cluster analysis tools, namely, K-means and Density-based Spatial Clustering of Applications with Noise (DBSCAN), were explored for clustering and feature representation of varied analytical datasets. It has been shown that the clustering patterns delineated by the used algorithms changed based on the included chromatographic profiles. The applied data analysis tools were found effective in revealing patterns of similarity and variability between i) intact and stressed as well as ii) originator and biosimilar samples.

摘要

生物类似药产品为改善全球医疗保健系统带来了越来越多的机遇。在生物类似药产品的对比评估过程中,可接受的变异性程度给生物类似药开发者和监管机构都带来了重大挑战。本研究的目的是探索无监督机器学习工具,作为一种数学辅助手段,用于利用从高通量分析技术中提取的数据,在控制和应激条件下解释和可视化这种可比性。为此,对三种已获批的曲妥珠单抗(TTZ)生物类似药和原研产品(赫赛汀®)的理化特性进行了直接比较分析。所研究的质量属性包括通过反相色谱 - 紫外检测的肽图分析(PM)确定的一级结构和同一性、通过稳定性指示尺寸排阻色谱和阳离子交换色谱确定的大小和电荷分布。应激条件包括pH值和热应激。探索了主成分分析(PCA)以及两种广泛使用的聚类分析工具,即K均值聚类和基于密度的带噪声空间聚类应用(DBSCAN),用于对各种分析数据集进行聚类和特征表示。结果表明,所使用算法描绘的聚类模式会根据所包含的色谱图而变化。发现所应用的数据分析工具能够有效地揭示以下两组样本之间的相似性和变异性模式:i)完整样本与应激样本之间,以及ii)原研样本与生物类似药样本之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验