Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA.
Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT.
Blood. 2022 Jan 27;139(4):608-623. doi: 10.1182/blood.2021013054.
The key immunologic signatures associated with clinical outcomes after posttransplant cyclophosphamide (PTCy)-based HLA-haploidentical (haplo) and HLA-matched bone marrow transplantation (BMT) are largely unknown. To address this gap in knowledge, we used machine learning to decipher clinically relevant signatures from immunophenotypic, proteomic, and clinical data and then examined transcriptome changes in the lymphocyte subsets that predicted major posttransplant outcomes. Kinetics of immune subset reconstitution after day 28 were similar for 70 patients undergoing haplo and 75 patients undergoing HLA-matched BMT. Machine learning based on 35 candidate factors (10 clinical, 18 cellular, and 7 proteomic) revealed that combined elevations in effector CD4+ conventional T cells (Tconv) and CXCL9 at day 28 predicted acute graft-versus-host disease (aGVHD). Furthermore, higher NK cell counts predicted improved overall survival (OS) due to a reduction in both nonrelapse mortality and relapse. Transcriptional and flow-cytometric analyses of recovering lymphocytes in patients with aGVHD identified preserved hallmarks of functional CD4+ regulatory T cells (Tregs) while highlighting a Tconv-driven inflammatory and metabolic axis distinct from that seen with conventional GVHD prophylaxis. Patients developing early relapse displayed a loss of inflammatory gene signatures in NK cells and a transcriptional exhaustion phenotype in CD8+ T cells. Using a multimodality approach, we highlight the utility of systems biology in BMT biomarker discovery and offer a novel understanding of how PTCy influences alloimmune responses. Our work charts future directions for novel therapeutic interventions after these increasingly used GVHD prophylaxis platforms. Specimens collected on NCT0079656226 and NCT0080927627 https://clinicaltrials.gov/.
与 posttransplant cyclophosphamide (PTCy)- 基于 HLA-haploidentical (haplo) 和 HLA-matched 骨髓移植 (BMT) 后临床结局相关的关键免疫学特征在很大程度上尚不清楚。为了解决这一知识空白,我们使用机器学习从免疫表型、蛋白质组学和临床数据中破译与临床相关的特征,然后检查预测主要移植后结果的淋巴细胞亚群的转录组变化。在第 28 天之后,70 例接受 haplo 和 75 例接受 HLA-matched BMT 的患者的免疫亚群重建动力学相似。基于 35 个候选因素(10 个临床、18 个细胞和 7 个蛋白质组学)的机器学习显示,第 28 天效应性 CD4+常规 T 细胞(Tconv)和 CXCL9 的联合升高预测急性移植物抗宿主病(aGVHD)。此外,NK 细胞计数升高预示着总生存率(OS)提高,这是由于非复发死亡率和复发率降低。在发生 aGVHD 的患者中对恢复淋巴细胞进行转录和流式细胞术分析,发现了功能 CD4+调节性 T 细胞(Tregs)的保存特征,同时突出了与常规 GVHD 预防所见不同的 Tconv 驱动的炎症和代谢轴。发生早期复发的患者在 NK 细胞中失去了炎症基因特征,并在 CD8+T 细胞中表现出转录耗竭表型。使用多模态方法,我们强调了系统生物学在 BMT 生物标志物发现中的应用,并提供了对 PTCy 如何影响同种免疫反应的新理解。我们的工作为这些越来越多使用的 GVHD 预防平台后进行新型治疗干预指明了未来方向。标本采集于 NCT0079656226 和 NCT0080927627 https://clinicaltrials.gov/。