Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.
New England Biolabs, 240 County Road, Ipswich, MA 01938, USA.
Nucleic Acids Res. 2021 Nov 8;49(19):11257-11273. doi: 10.1093/nar/gkab906.
Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.
细菌已经进化出多种系统来防止噬菌体和其他移动遗传元件的入侵。比较基因组学表明,编码细菌防御机制的基因通常聚集在“防御岛”中,为更广泛的攻击提供协同水平的保护。然而,关于多种防御系统之间的功能相互作用的信息相对较少。在这里,我们从新兴病原体弗格森埃希氏菌的多药耐药质粒中对一个防御岛进行了功能表征。我们使用了三十种环境分离的 coliphage,证明了由质粒编码的防御岛提供的多层和强大的噬菌体保护,该防御岛表达了 I 型 BREX 系统和新型 GmrSD 家族的 IV 型 DNA 修饰依赖性限制酶 BrxU。我们展示了 BrxU 的结构,分辨率为 2.12 Å,这是 GmrSD 家族酶的第一个结构,并表明 BrxU 可以利用所有常见的核苷酸和广泛的金属来切割一系列修饰的 DNA。此外,BrxU 经历了一个多步反应循环,由出乎意料的 ATP 依赖性从交织的二聚体到单体的转变引发。这一直接证据表明,细菌防御岛可以介导互补的噬菌体保护层,增强了我们对噬菌体与细菌相互作用不断扩大的性质的理解。