Gruslova Aleksandra B, Katta Nitesh, Cabe Andrew G, Jenney Scott F, Valvano Jonathan W, Phillips Tim B, McElroy Austin B, LaSalle Robert K, Zahedivash Aydin, Truskett Van N, Viswanathan Nishi, Feldman Marc D, Wettstein Richard B, Milner Thomas E, Derdak Stephen
Department of Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, DTL 5.532U, San Antonio, TX, 78229, USA.
Beckman Laser Institute, The University of California Irvine, Irvine, CA, USA.
Intensive Care Med Exp. 2021 Oct 18;9(1):54. doi: 10.1186/s40635-021-00419-2.
The COVID-19 pandemic has caused a global mechanical ventilator shortage for treatment of severe acute respiratory failure. Development of novel breathing devices has been proposed as a low cost, rapid solution when full-featured ventilators are unavailable. Here we report the design, bench testing and preclinical results for an 'Automated Bag Breathing Unit' (ABBU). Output parameters were validated with mechanical test lungs followed by animal model testing.
The ABBU design uses a programmable motor-driven wheel assembled for adult resuscitation bag-valve compression. ABBU can control tidal volume (200-800 ml), respiratory rate (10-40 bpm), inspiratory time (0.5-1.5 s), assist pressure sensing (- 1 to - 20 cm HO), manual PEEP valve (0-20 cm HO). All set values are displayed on an LCD screen. Bench testing with lung simulators (Michigan 1600, SmartLung 2000) yielded consistent tidal volume delivery at compliances of 20, 40 and 70 (mL/cm HO). The delivered fraction of inspired oxygen (FiO) decreased with increasing minute ventilation (V), from 98 to 47% when V was increased from 4 to 16 L/min using a fixed oxygen flow source of 5 L/min. ABBU was tested in Berkshire pigs (n = 6, weight of 50.8 ± 2.6 kg) utilizing normal lung model and saline lavage induced lung injury. Arterial blood gases were measured following changes in tidal volume (200-800 ml), respiratory rate (10-40 bpm), and PEEP (5-20 cm HO) at baseline and after lung lavage. Physiological levels of PaCO (≤ 40 mm Hg [5.3 kPa]) were achieved in all animals at baseline and following lavage injury. PaO increased in lavage injured lungs in response to incremental PEEP (5-20 cm HO) (p < 0.01). At fixed low oxygen flow rates (5 L/min), delivered FiO decreased with increased V.
ABBU provides oxygenation and ventilation across a range of parameter settings that may potentially provide a low-cost solution to ventilator shortages. A clinical trial is necessary to establish safety and efficacy in adult patients with diverse etiologies of respiratory failure.
新型冠状病毒肺炎(COVID-19)大流行导致全球用于治疗严重急性呼吸衰竭的机械通气机短缺。当无法获得功能齐全的通气机时,开发新型呼吸设备被提议作为一种低成本、快速的解决方案。在此,我们报告一种“自动气囊呼吸装置”(ABBU)的设计、台架测试和临床前结果。使用机械测试肺对输出参数进行验证,随后进行动物模型测试。
ABBU的设计采用了一个可编程的电动轮,用于成人复苏气囊-阀门按压。ABBU能够控制潮气量(200 - 800毫升)、呼吸频率(10 - 40次/分钟)、吸气时间(0.5 - 1.5秒)、辅助压力传感(-1至-20厘米水柱)、手动呼气末正压阀(0 - 20厘米水柱)。所有设定值都显示在液晶显示屏上。使用肺模拟器(密歇根1600型、智能肺2000型)进行台架测试,在顺应性为20、40和70(毫升/厘米水柱)时,潮气量输送一致。当使用5升/分钟的固定氧气流源,分钟通气量(V)从4升/分钟增加到16升/分钟时,吸入氧分数(FiO)随分钟通气量增加而降低,从98%降至47%。在伯克希尔猪(n = 6,体重50.8±2.6千克)身上利用正常肺模型和盐水灌洗诱导的肺损伤对ABBU进行测试。在基线和肺灌洗后,改变潮气量(200 - 800毫升)、呼吸频率(10 - 40次/分钟)和呼气末正压(5 - 20厘米水柱)后测量动脉血气。在基线和灌洗损伤后,所有动物的动脉血二氧化碳分压(PaCO)均达到生理水平(≤40毫米汞柱[5.3千帕])。灌洗损伤的肺中,随着呼气末正压增加(5 - 20厘米水柱),动脉血氧分压(PaO)升高(p < 0.01)。在固定的低氧气流速(5升/分钟)下,输送的FiO随V增加而降低。
ABBU在一系列参数设置下提供氧合和通气,可能为通气机短缺提供一种低成本解决方案。有必要进行一项临床试验,以确定其在不同病因呼吸衰竭成年患者中的安全性和有效性。