Suppr超能文献

识别和刻画社交媒体社区:一种用于替代计量学的社会语义网络方法。

Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics.

作者信息

Arroyo-Machado Wenceslao, Torres-Salinas Daniel, Robinson-Garcia Nicolas

机构信息

EC3 Research Group, Department of Information and Communication Sciences, Faculty of Communication and Documentation, University of Granada, Granada, Spain.

出版信息

Scientometrics. 2021;126(11):9267-9289. doi: 10.1007/s11192-021-04167-8. Epub 2021 Oct 12.

Abstract

Altmetric indicators allow exploring and profiling individuals who discuss and share scientific literature in social media. But it is still a challenge to identify and characterize communities based on the research topics in which they are interested as social and geographic proximity also influence interactions. This paper proposes a new method which profiles social media users based on their interest on research topics using altmetric data. Social media users are clustered based on the topics related to the research publications they share in social media. This allows removing linkages which respond to social or personal proximity and identifying disconnected users who may have similar research interests. We test this method for users tweeting publications from the fields of Information Science & Library Science, and Microbiology. We conclude by discussing the potential application of this method and how it can assist information professionals, policy managers and academics to understand and identify the main actors discussing research literature in social media.

摘要

替代计量指标有助于探索和描述在社交媒体上讨论和分享科学文献的个体。但基于他们感兴趣的研究主题来识别和描述群体仍然是一项挑战,因为社会和地理上的亲近性也会影响互动。本文提出了一种新方法,该方法利用替代计量数据,根据社交媒体用户对研究主题的兴趣来描述他们的特征。社交媒体用户根据他们在社交媒体上分享的研究出版物相关主题进行聚类。这有助于消除因社会或个人亲近性而产生的联系,并识别出可能具有相似研究兴趣但相互独立的用户。我们针对在推特上分享信息科学与图书馆学以及微生物学领域出版物的用户测试了该方法。最后,我们讨论了这种方法的潜在应用,以及它如何帮助信息专业人员、政策管理者和学者理解和识别在社交媒体上讨论研究文献的主要参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0634/8507359/f3711b618eec/11192_2021_4167_Fig1_HTML.jpg

相似文献

1
Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics.
Scientometrics. 2021;126(11):9267-9289. doi: 10.1007/s11192-021-04167-8. Epub 2021 Oct 12.
2
Mapping social media attention in Microbiology: identifying main topics and actors.
FEMS Microbiol Lett. 2019 Apr 1;366(7). doi: 10.1093/femsle/fnz075.
3
An extensive analysis of the presence of altmetric data for Web of Science publications across subject fields and research topics.
Scientometrics. 2020;124(3):2519-2549. doi: 10.1007/s11192-020-03564-9. Epub 2020 Jun 17.
5
6
Highly visible sepsis publications from 2012 to 2017: Analysis and comparison of altmetrics and bibliometrics.
J Crit Care. 2018 Dec;48:357-371. doi: 10.1016/j.jcrc.2018.09.033. Epub 2018 Sep 30.
7
Towards a second generation of 'social media metrics': Characterizing Twitter communities of attention around science.
PLoS One. 2019 May 22;14(5):e0216408. doi: 10.1371/journal.pone.0216408. eCollection 2019.
8
What Is the Predictive Ability and Academic Impact of the Altmetrics Score and Social Media Attention?
Am J Sports Med. 2020 Apr;48(5):1056-1062. doi: 10.1177/0363546520903703. Epub 2020 Feb 28.
9
A systematic identification and analysis of scientists on Twitter.
PLoS One. 2017 Apr 11;12(4):e0175368. doi: 10.1371/journal.pone.0175368. eCollection 2017.
10
Disseminating Hand Surgery Research Using Social Media: The Relationship Between Altmetrics and Citations.
J Hand Surg Am. 2021 Sep;46(9):740-747. doi: 10.1016/j.jhsa.2021.03.028. Epub 2021 May 26.

引用本文的文献

1
Evaluative altmetrics: is there evidence for its application to research evaluation?
Front Res Metr Anal. 2023 Jul 25;8:1188131. doi: 10.3389/frma.2023.1188131. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验