Arroyo-Machado Wenceslao, Torres-Salinas Daniel, Robinson-Garcia Nicolas
EC3 Research Group, Department of Information and Communication Sciences, Faculty of Communication and Documentation, University of Granada, Granada, Spain.
Scientometrics. 2021;126(11):9267-9289. doi: 10.1007/s11192-021-04167-8. Epub 2021 Oct 12.
Altmetric indicators allow exploring and profiling individuals who discuss and share scientific literature in social media. But it is still a challenge to identify and characterize communities based on the research topics in which they are interested as social and geographic proximity also influence interactions. This paper proposes a new method which profiles social media users based on their interest on research topics using altmetric data. Social media users are clustered based on the topics related to the research publications they share in social media. This allows removing linkages which respond to social or personal proximity and identifying disconnected users who may have similar research interests. We test this method for users tweeting publications from the fields of Information Science & Library Science, and Microbiology. We conclude by discussing the potential application of this method and how it can assist information professionals, policy managers and academics to understand and identify the main actors discussing research literature in social media.
替代计量指标有助于探索和描述在社交媒体上讨论和分享科学文献的个体。但基于他们感兴趣的研究主题来识别和描述群体仍然是一项挑战,因为社会和地理上的亲近性也会影响互动。本文提出了一种新方法,该方法利用替代计量数据,根据社交媒体用户对研究主题的兴趣来描述他们的特征。社交媒体用户根据他们在社交媒体上分享的研究出版物相关主题进行聚类。这有助于消除因社会或个人亲近性而产生的联系,并识别出可能具有相似研究兴趣但相互独立的用户。我们针对在推特上分享信息科学与图书馆学以及微生物学领域出版物的用户测试了该方法。最后,我们讨论了这种方法的潜在应用,以及它如何帮助信息专业人员、政策管理者和学者理解和识别在社交媒体上讨论研究文献的主要参与者。