Suppr超能文献

对推特上科学家的系统识别与分析。

A systematic identification and analysis of scientists on Twitter.

作者信息

Ke Qing, Ahn Yong-Yeol, Sugimoto Cassidy R

机构信息

School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America.

出版信息

PLoS One. 2017 Apr 11;12(4):e0175368. doi: 10.1371/journal.pone.0175368. eCollection 2017.

Abstract

Metrics derived from Twitter and other social media-often referred to as altmetrics-are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually-we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics.

摘要

源自推特和其他社交媒体的指标——通常被称为替代计量指标——越来越多地用于评估学术研究更广泛的社会影响。然而,此类做法可能会产生极具误导性的结果,因为在这些平台上参与科学相关对话的实体大多不为人知。例如,如果替代计量活动主要由科学家产生,那它真的能反映科学更广泛的社会影响吗?在此,我们提出一种在推特上识别和分析科学家的系统方法。我们的方法无需依赖外部文献数据就能识别多个学科的科学家,并且能轻松调整以识别科学界的其他利益相关群体。我们调查了所识别科学家的人口统计学特征、分享行为和相互联系。我们发现,各学科领域的学者都在使用推特,其中社会科学家、计算机与信息科学家占比过高;数学、物理和生命科学家占比过低;与学术出版领域相比,女性的占比情况更好。对网址分享的分析揭示了学术网站的明显印记,但只有一小部分分享的网址与科学相关。我们发现科学家之间的网络在学科方面存在同配混合现象,这表明社交媒体中存在学科壁垒。我们的工作在方法和概念上都对相关文献有所贡献——我们提供了新方法来消除社交媒体上特定行为者的歧义并加以识别,以及描述科学家的行为,从而为基于社交媒体指标构建和使用指标提供基础信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3a9/5388341/2758ba1e0114/pone.0175368.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验