Phumichai Chalermpol, Aiemnaka Pornsak, Nathaisong Piyaporn, Hunsawattanakul Sirikan, Fungfoo Phasakorn, Rojanaridpiched Chareinsuk, Vichukit Vichan, Kongsil Pasajee, Kittipadakul Piya, Wannarat Wannasiri, Chunwongse Julapark, Tongyoo Pumipat, Kijkhunasatian Chookiat, Chotineeranat Sunee, Piyachomkwan Kuakoon, Wolfe Marnin D, Jannink Jean-Luc, Sorrells Mark E
Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
Theor Appl Genet. 2022 Jan;135(1):145-171. doi: 10.1007/s00122-021-03956-2. Epub 2021 Oct 18.
GWAS identified eight yield-related, peak starch type of waxy and wild-type starch and 21 starch pasting property-related traits (QTLs). Prediction ability of eight GS models resulted in low to high predictability, depending on trait, heritability, and genetic architecture. Cassava is both a food and an industrial crop in Africa, South America, and Asia, but knowledge of the genes that control yield and starch pasting properties remains limited. We carried out a genome-wide association study to clarify the molecular mechanisms underlying these traits and to explore marker-based breeding approaches. We estimated the predictive ability of genomic selection (GS) using parametric, semi-parametric, and nonparametric GS models with a panel of 276 cassava genotypes from Thai Tapioca Development Institute, International Center for Tropical Agriculture, International Institute of Tropical Agriculture, and other breeding programs. The cassava panel was genotyped via genotyping-by-sequencing, and 89,934 single-nucleotide polymorphism (SNP) markers were identified. A total of 31 SNPs associated with yield, starch type, and starch properties traits were detected by the fixed and random model circulating probability unification (FarmCPU), Bayesian-information and linkage-disequilibrium iteratively nested keyway and compressed mixed linear model, respectively. GS models were developed, and forward predictabilities using all the prediction methods resulted in values of - 0.001-0.71 for the four yield-related traits and 0.33-0.82 for the seven starch pasting property traits. This study provides additional insight into the genetic architecture of these important traits for the development of markers that could be used in cassava breeding programs.
全基因组关联研究(GWAS)确定了8个与产量相关的、蜡质淀粉和野生型淀粉的峰值淀粉类型,以及21个与淀粉糊化特性相关的性状(数量性状基因座,QTLs)。8种基因组选择(GS)模型的预测能力因性状、遗传力和遗传结构而异,预测性从低到高。木薯在非洲、南美洲和亚洲既是粮食作物又是经济作物,但控制产量和淀粉糊化特性的基因相关知识仍然有限。我们开展了一项全基因组关联研究,以阐明这些性状背后的分子机制,并探索基于标记的育种方法。我们使用参数化、半参数化和非参数化GS模型,对来自泰国木薯发展研究所、国际热带农业中心、国际热带农业研究所及其他育种项目的276个木薯基因型进行了基因组选择预测能力评估。通过简化基因组测序对木薯群体进行基因分型,共鉴定出89,934个单核苷酸多态性(SNP)标记。分别使用固定和随机模型循环概率统一法(FarmCPU)、贝叶斯信息和连锁不平衡迭代嵌套关键路法以及压缩混合线性模型,检测到31个与产量、淀粉类型和淀粉特性性状相关的SNP。构建了GS模型,使用所有预测方法对四个产量相关性状的正向预测值为-0.001至0.71,对七个淀粉糊化特性性状的正向预测值为0.33至0.82。本研究为这些重要性状的遗传结构提供了更多见解,有助于开发可用于木薯育种项目的标记。